cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035489 Main diagonal of the Stolarsky array.

Original entry on oeis.org

1, 6, 18, 39, 81, 157, 309, 576, 1042, 1885, 3338, 6011, 10569, 18321, 31851, 55717, 95320, 163580, 278208, 478807, 814329, 1374926, 2328359, 3963782, 6656320, 11209356, 18772741, 31524784, 53186481, 88750072, 148471480, 247281057, 415039507, 692181268
Offset: 0

Views

Author

Keywords

Comments

General solution for the Stolarsky array by row, column is given by the PARI/GP program. Solution for the main diagonal in A035506 is found by setting r=c. If computing large terms for the Stolarsky array, increase the default precision of PARI/GP to accommodate the size. - Randall L Rathbun, Jan 25 2002

Crossrefs

See A007064 for references.
Main diagonal of A035506.
Cf. A001622.

Programs

  • Maple
    a:= proc(n) local t, a, b;
           t:= (1+sqrt(5))/2;
           a:= floor(n*(t+1)+1+t/2);
           b:= round(a*t);
           (<<0|1>, <1|1>>^n. <>)[1, 1]
        end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Mar 22 2023
  • Mathematica
    a[n_] := Module[{t = GoldenRatio, a, b},
       a = Floor[n*(t+1) + 1 + t/2];
       b = Round[a*t];
       (MatrixPower[{{0, 1}, {1, 1}}, n].{a, b})[[1]]];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Apr 16 2023, after Alois P. Heinz *)
  • PARI
    {Stolarsky(r,c)= tau=(1+sqrt(5))/2; a=floor(r*(1+tau)-tau/2); b=round(a*tau); if(c==1,a, if(c==2,b, for(i=1,c-2,d=a+b; a=b; b=d; ); d))}

Extensions

More terms from Randall L Rathbun, Jan 25 2002