cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035497 Happy primes: primes that eventually reach 1 under iteration of "x -> sum of squares of digits of x".

Original entry on oeis.org

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093, 1151, 1277, 1303, 1373, 1427, 1447, 1481, 1487, 1511, 1607, 1663
Offset: 1

Views

Author

Keywords

Comments

The 2nd and 3rd repunit primes, 1111111111111111111 and 11111111111111111111111 are happy primes. - Thomas M. Green, Oct 23 2009
There are 200 terms up to 10^4, 1465 up to 10^5, 11144 up to 10^6, 91323 up to 10^7, 812371 up to 10^8, 7408754 up to 10^9, and 67982202 up to 10^10. These are consistent with b*prime(n) < a(n) < c*prime(n) with constants 0 < b < c. - Charles R Greathouse IV, Jan 06 2016

References

  • R. K. Guy, Unsolved Problems Number Theory, Sect. E34.

Crossrefs

Cf. A007770 (happy numbers), A046519.

Programs

  • Mathematica
    g[n_] := Total[ IntegerDigits[n]^2]; fQ[n_] := NestWhileList[g@# &, n, UnsameQ, All][[-1]] == 1; Select[Prime@ Range@ 300, fQ@# &] (* Robert G. Wilson v, Jan 03 2013 *)
    hpQ[p_]:=NestWhile[Total[IntegerDigits[#]^2]&,p,#!=1&,1,50]==1; Select[Prime[ Range[ 300]],hpQ] (* Harvey P. Dale, Jun 07 2022 *)
  • PARI
    has(n)=while(n>6, n=norml2(digits(n))); n==1
    is(n)=has(n) && isprime(n) \\ Charles R Greathouse IV, Dec 14 2015
    
  • Python
    from sympy import isprime
    def swb(n): return sum(map(lambda x: x*x, map(int, str(n))))
    def happy(bd):
        while bd not in [1, 4]: bd = swb(bd) # iterate to fixed point or cycle
        return bd == 1
    def ok(n): return isprime(n) and happy(n)
    def aupto(n): return [k for k in range(1, n+1) if ok(k)]
    print(aupto(2012)) # Michael S. Branicky, Jul 13 2022

Extensions

More terms from Patrick De Geest, Oct 15 1999