cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035531 a(n) = A000120(n) + A001221(n) - 1.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 3, 1, 2, 3, 3, 3, 3, 4, 5, 1, 2, 3, 3, 3, 4, 4, 4, 3, 3, 4, 4, 4, 4, 6, 5, 1, 3, 3, 4, 3, 3, 4, 5, 3, 3, 5, 4, 4, 5, 5, 5, 3, 3, 4, 5, 4, 4, 5, 6, 4, 5, 5, 5, 6, 5, 6, 7, 1, 3, 4, 3, 3, 4, 5, 4, 3, 3, 4, 5, 4, 5, 6, 5, 3, 3, 4, 4, 5, 5, 5, 6, 4, 4, 6, 6, 5, 6, 6, 7, 3, 3, 4, 5, 4, 4, 6, 5, 4, 6, 5, 5, 5, 5, 7, 7
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. also A336149.

Programs

  • Maple
    A035531 := proc(n)
        A000120(n)+A001221(n)-1 ;
    end proc:
    seq(A035531(n),n=1..100) ; # R. J. Mathar, Mar 12 2018
  • Mathematica
    Table[DigitCount[n, 2, 1] + PrimeNu[n] - 1, {n, 1, 100}] (* G. C. Greubel, Apr 24 2017 *)
  • PARI
    a(n) = hammingweight(n) + omega(n) - 1; \\ Michel Marcus, Apr 25 2017
    
  • Python
    from sympy import primefactors
    def a(n): return 0 if n<2 else bin(n)[2:].count("1") + len(primefactors(n)) - 1 # Indranil Ghosh, Apr 25 2017

Formula

G.f.: Sum a(n) x^n = Sum A000120(p)*x^p/(1-x^p), p = prime.

Extensions

More terms from David W. Wilson.