cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035602 Number of points of L1 norm 8 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 32, 258, 1408, 5890, 20256, 59906, 157184, 374274, 822560, 1690370, 3281280, 6065410, 10746400, 18347010, 30316544, 48663554, 76117536, 116323586, 174074240, 255582978, 368804128, 523804162, 733189632
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(2*n^8+8*7*n^6+4*7*11*n^4+8*3*11*n^2)/315: n in [0..30]]; // Vincenzo Librandi, Apr 24 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^7/(1-x)^9,{x,0,30}],x] (* Vincenzo Librandi, Apr 24 2012 *)
  • PARI
    a(n)=2*n^2*(n^6+28*n^4+154*n^2+132)/315 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = (2*n^8 + 8*7*n^6 + 4*7*11*n^4 + 8*3*11*n^2)/(5*7*9). - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^7/(1-x)^9. - Colin Barker, Apr 15 2012
a(n) = 2*A099195(n). - R. J. Mathar, Dec 10 2013