cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A119800 Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals).

Original entry on oeis.org

4, 8, 6, 12, 18, 8, 16, 38, 32, 10, 20, 66, 88, 50, 12, 24, 102, 192, 170, 72, 14, 28, 146, 360, 450, 292, 98, 16, 32, 198, 608, 1002, 912, 462, 128, 18, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 40, 326, 1408, 3530, 5336, 4942, 2816, 978, 200, 22
Offset: 1

Views

Author

Thomas Wieder, Jul 30 2006, Aug 06 2006

Keywords

Examples

			The second row of the table is: 6, 18, 38, 66, 102, 146, 198, 258, 326, ... = A005899 = number of points on surface of octahedron.
The third column of the table is: 12, 38, 88, 170, 292, 462, 688, 978, 1340, ... = A035597 = number of points of L1 norm 3 in cubic lattice Z^n.
The first rows are: A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420.
The first columns are: A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603.
The main diagonal seems to be A050146.
Square array A(n,k) begins:
   4,   8,   12,   16,    20,    24,     28,     32,      36, ...
   6,  18,   38,   66,   102,   146,    198,    258,     326, ...
   8,  32,   88,  192,   360,   608,    952,   1408,    1992, ...
  10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290, ...
  12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436, ...
  14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598, ...
  16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688, ...
  18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146, ...
  20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(m, n)  option remember;
          `if`(n=0, 1, `if`(m=0, 2, A(m, n-1) +A(m-1, n) +A(m-1, n-1)))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    A[m_, n_] := A[m, n] = If[n == 0, 1, If[m == 0, 2, A[m, n-1] + A[m-1, n] + A[m-1, n-1]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

Formula

A(m,n) = A(m,n-1) + A(m-1,n) + A(m-1,n-1), A(m,0)=1, A(0,0)=1, A(0,n)=2.

Extensions

Offset and typos corrected by Alois P. Heinz, Apr 21 2012

A103884 Square array A(n,k) read by antidiagonals: row n gives coordination sequence for lattice C_n.

Original entry on oeis.org

1, 1, 8, 1, 18, 16, 1, 32, 66, 24, 1, 50, 192, 146, 32, 1, 72, 450, 608, 258, 40, 1, 98, 912, 1970, 1408, 402, 48, 1, 128, 1666, 5336, 5890, 2720, 578, 56, 1, 162, 2816, 12642, 20256, 14002, 4672, 786, 64, 1, 200, 4482, 27008, 59906, 58728, 28610, 7392, 1026, 72
Offset: 2

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			Array begins:
  1,   8,    16,     24,      32,       40,        48, ... A022144;
  1,  18,    66,    146,     258,      402,       578, ... A010006;
  1,  32,   192,    608,    1408,     2720,      4672, ... A019560;
  1,  50,   450,   1970,    5890,    14002,     28610, ... A019561;
  1,  72,   912,   5336,   20256,    58728,    142000, ... A019562;
  1,  98,  1666,  12642,   59906,   209762,    596610, ... A019563;
  1, 128,  2816,  27008,  157184,   658048,   2187520, ... A019564;
  1, 162,  4482,  53154,  374274,  1854882,   7159170, ... A035746;
  1, 200,  6800,  97880,  822560,  4780008,  21278640, ... A035747;
  1, 242,  9922, 170610, 1690370, 11414898,  58227906, ... A035748;
  1, 288, 14016, 284000, 3281280, 25534368, 148321344, ... A035749;
  ...
Antidiagonals, T(n, k), begins as:
  1;
  1,   8;
  1,  18,   16;
  1,  32,   66,   24;
  1,  50,  192,  146,   32;
  1,  72,  450,  608,  258,   40;
  1,  98,  912, 1970, 1408,  402,  48;
  1, 128, 1666, 5336, 5890, 2720, 578, 56;
		

Crossrefs

Programs

  • Magma
    A103884:= func< n,k | k eq 0 select 1 else 2*(&+[2^j*Binomial(n-k,j+1)*Binomial(2*k-1,j) : j in [0..2*k-1]]) >;
    [A103884(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, May 23 2023
    
  • Mathematica
    nmin = 2; nmax = 11; t[n_, 0]= 1; t[n_, k_]:= 2n*Hypergeometric2F1[1-2k, 1-n, 2, 2]; tnk= Table[ t[n, k], {n, nmin, nmax}, {k, 0, nmax-nmin}]; Flatten[ Table[ tnk[[ n-k+1, k ]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* Jean-François Alcover, Jan 24 2012, after formula *)
  • SageMath
    def A103884(n,k): return 1 if k==0 else 2*sum(2^j*binomial(n-k,j+1)*binomial(2*k-1,j) for j in range(2*k))
    flatten([[A103884(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, May 23 2023

Formula

A(n,k) = Sum_{i=1..2*k} 2^i*C(n, i)*C(2*k-1, i-1), A(n,0) = 1 (array).
G.f. of n-th row: (Sum_{i=0..n} C(2*n, 2*i)*x^i)/(1-x)^n.
T(n, k) = A(n-k, k) (antidiagonals).
T(n, n-2) = A022144(n-2).
T(n, k) = 2*(n-k)*Hypergeometric2F1([1+k-n, 1-2*k], [2], 2), T(n, 0) = 1, for n >= 2, 0 <= k <= n-2. - G. C. Greubel, May 23 2023
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Chebyshev_T(n, (1 + x)/(1 - x)), where Chebyshev_T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
T(n+1,k) = T(n+1,k-1) + 2*T(n,k) + 2*T(n,k-1) + T(n-1,k) - T(n-1,k-1). (End)

Extensions

Definition clarified by N. J. A. Sloane, May 25 2023

A035598 Number of points of L1 norm 4 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 16, 66, 192, 450, 912, 1666, 2816, 4482, 6800, 9922, 14016, 19266, 25872, 34050, 44032, 56066, 70416, 87362, 107200, 130242, 156816, 187266, 221952, 261250, 305552, 355266, 410816, 472642, 541200, 616962, 700416, 792066
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [( 2*n^4 +4*n^2 )/3: n in [0..40]]; // Vincenzo Librandi, Apr 22 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^3/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, Apr 22 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,2,16,66,192},50] (* Harvey P. Dale, Dec 11 2019 *)
  • PARI
    a(n)=2*n^2*(n^2+2)/3 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = 2*n^2*(n^2 + 2)/3. - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^3/(1-x)^5. - Colin Barker, Apr 15 2012
a(n) = 2*A014820(n-1). - R. J. Mathar, Dec 10 2013
a(n) = a(n-1) + A035597(n) + A035597(n-1). - Bruce J. Nicholson, Mar 11 2018
From Shel Kaphan, Feb 28 2023: (Start)
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=4.
a(n) = A001846(n) - A001845(n).
a(n) = A008412(n)*n/4. (End)
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 - 3*Pi*coth(sqrt(2)*Pi)/(8*sqrt(2)) + 3/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/16 + 3*Pi*cosech(sqrt(2)*Pi)/(8*sqrt(2)) - 3/16. (End)
E.g.f.: 2*exp(x)*x*(3 + 9*x + 6*x^2 + x^3)/3. - Stefano Spezia, Mar 14 2024
Showing 1-3 of 3 results.