cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A008412 Coordination sequence for 4-dimensional cubic lattice (points on surface of 4-dimensional cross-polytope).

Original entry on oeis.org

1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992, 2720, 3608, 4672, 5928, 7392, 9080, 11008, 13192, 15648, 18392, 21440, 24808, 28512, 32568, 36992, 41800, 47008, 52632, 58688, 65192, 72160, 79608, 87552, 96008, 104992, 114520, 124608, 135272
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 4-dimensional cyclotomic lattice Z[zeta_8].
If Y_i (i=1,2,3,4) are 2-blocks of a (n+4)-set X then a(n-3) is the number of 7-subsets of X intersecting each Y_i (i=1,2,3,4). - Milan Janjic, Oct 28 2007

Crossrefs

First differences of A001846.
Row 4 of A035607, A266213.
Column 4 of A113413, A119800, A122542.

Programs

  • Magma
    I:=[1,8,32,88,192]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 15 2018
  • Maple
    8/3*n^3+16/3*n;
  • Mathematica
    CoefficientList[Series[((1+x)/(1-x))^4,{x,0,40}],x] (* or *)
    LinearRecurrence[{4, -6, 4, -1}, {1, 8, 32, 88, 192}, 41] (* Harvey P. Dale, Jun 10 2011 *)
    f[n_] := 8 n (n^2 + 2)/3; f[0] = 1; Array[f, 38, 0] (* or *)
    g[n_] := 4n^2 +2; f[n_] := f[n-1] + g[n] + g[n -1]; f[0] = 1; f[1] = 8; Array[f, 38, 0] (* Robert G. Wilson v, Dec 27 2017 *)
  • PARI
    a(n)=if(n,8*(n^2+2)*n/3,1) \\ Charles R Greathouse IV, Jun 10 2011
    

Formula

G.f.: ((1+x)/(1-x))^4.
a(n) = 8*n*(n^2+2)/3 for n>1.
a(n) = 8*A006527(n) for n>0.
a(n) = A005899(n) + A005899(n-1) + a(n-1). - Bruce J. Nicholson, Dec 17 2017
n*a(n) = 8*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
a(n) = 2*d*Hypergeometric2F1(1-d, 1-n, 2, 2) where d=4, for n>=1. - Shel Kaphan, Feb 14 2023
a(n) = A035598(n)*4/n, for n>0. - Shel Kaphan, Feb 28 2023
E.g.f.: 1 + 8*exp(x)*x*(3 + 3*x + x^2)/3. - Stefano Spezia, Mar 14 2024

A119800 Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals).

Original entry on oeis.org

4, 8, 6, 12, 18, 8, 16, 38, 32, 10, 20, 66, 88, 50, 12, 24, 102, 192, 170, 72, 14, 28, 146, 360, 450, 292, 98, 16, 32, 198, 608, 1002, 912, 462, 128, 18, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 40, 326, 1408, 3530, 5336, 4942, 2816, 978, 200, 22
Offset: 1

Views

Author

Thomas Wieder, Jul 30 2006, Aug 06 2006

Keywords

Examples

			The second row of the table is: 6, 18, 38, 66, 102, 146, 198, 258, 326, ... = A005899 = number of points on surface of octahedron.
The third column of the table is: 12, 38, 88, 170, 292, 462, 688, 978, 1340, ... = A035597 = number of points of L1 norm 3 in cubic lattice Z^n.
The first rows are: A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420.
The first columns are: A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603.
The main diagonal seems to be A050146.
Square array A(n,k) begins:
   4,   8,   12,   16,    20,    24,     28,     32,      36, ...
   6,  18,   38,   66,   102,   146,    198,    258,     326, ...
   8,  32,   88,  192,   360,   608,    952,   1408,    1992, ...
  10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290, ...
  12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436, ...
  14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598, ...
  16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688, ...
  18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146, ...
  20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(m, n)  option remember;
          `if`(n=0, 1, `if`(m=0, 2, A(m, n-1) +A(m-1, n) +A(m-1, n-1)))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    A[m_, n_] := A[m, n] = If[n == 0, 1, If[m == 0, 2, A[m, n-1] + A[m-1, n] + A[m-1, n-1]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

Formula

A(m,n) = A(m,n-1) + A(m-1,n) + A(m-1,n-1), A(m,0)=1, A(0,0)=1, A(0,n)=2.

Extensions

Offset and typos corrected by Alois P. Heinz, Apr 21 2012

A103884 Square array A(n,k) read by antidiagonals: row n gives coordination sequence for lattice C_n.

Original entry on oeis.org

1, 1, 8, 1, 18, 16, 1, 32, 66, 24, 1, 50, 192, 146, 32, 1, 72, 450, 608, 258, 40, 1, 98, 912, 1970, 1408, 402, 48, 1, 128, 1666, 5336, 5890, 2720, 578, 56, 1, 162, 2816, 12642, 20256, 14002, 4672, 786, 64, 1, 200, 4482, 27008, 59906, 58728, 28610, 7392, 1026, 72
Offset: 2

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			Array begins:
  1,   8,    16,     24,      32,       40,        48, ... A022144;
  1,  18,    66,    146,     258,      402,       578, ... A010006;
  1,  32,   192,    608,    1408,     2720,      4672, ... A019560;
  1,  50,   450,   1970,    5890,    14002,     28610, ... A019561;
  1,  72,   912,   5336,   20256,    58728,    142000, ... A019562;
  1,  98,  1666,  12642,   59906,   209762,    596610, ... A019563;
  1, 128,  2816,  27008,  157184,   658048,   2187520, ... A019564;
  1, 162,  4482,  53154,  374274,  1854882,   7159170, ... A035746;
  1, 200,  6800,  97880,  822560,  4780008,  21278640, ... A035747;
  1, 242,  9922, 170610, 1690370, 11414898,  58227906, ... A035748;
  1, 288, 14016, 284000, 3281280, 25534368, 148321344, ... A035749;
  ...
Antidiagonals, T(n, k), begins as:
  1;
  1,   8;
  1,  18,   16;
  1,  32,   66,   24;
  1,  50,  192,  146,   32;
  1,  72,  450,  608,  258,   40;
  1,  98,  912, 1970, 1408,  402,  48;
  1, 128, 1666, 5336, 5890, 2720, 578, 56;
		

Crossrefs

Programs

  • Magma
    A103884:= func< n,k | k eq 0 select 1 else 2*(&+[2^j*Binomial(n-k,j+1)*Binomial(2*k-1,j) : j in [0..2*k-1]]) >;
    [A103884(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, May 23 2023
    
  • Mathematica
    nmin = 2; nmax = 11; t[n_, 0]= 1; t[n_, k_]:= 2n*Hypergeometric2F1[1-2k, 1-n, 2, 2]; tnk= Table[ t[n, k], {n, nmin, nmax}, {k, 0, nmax-nmin}]; Flatten[ Table[ tnk[[ n-k+1, k ]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* Jean-François Alcover, Jan 24 2012, after formula *)
  • SageMath
    def A103884(n,k): return 1 if k==0 else 2*sum(2^j*binomial(n-k,j+1)*binomial(2*k-1,j) for j in range(2*k))
    flatten([[A103884(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, May 23 2023

Formula

A(n,k) = Sum_{i=1..2*k} 2^i*C(n, i)*C(2*k-1, i-1), A(n,0) = 1 (array).
G.f. of n-th row: (Sum_{i=0..n} C(2*n, 2*i)*x^i)/(1-x)^n.
T(n, k) = A(n-k, k) (antidiagonals).
T(n, n-2) = A022144(n-2).
T(n, k) = 2*(n-k)*Hypergeometric2F1([1+k-n, 1-2*k], [2], 2), T(n, 0) = 1, for n >= 2, 0 <= k <= n-2. - G. C. Greubel, May 23 2023
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Chebyshev_T(n, (1 + x)/(1 - x)), where Chebyshev_T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
T(n+1,k) = T(n+1,k-1) + 2*T(n,k) + 2*T(n,k-1) + T(n-1,k) - T(n-1,k-1). (End)

Extensions

Definition clarified by N. J. A. Sloane, May 25 2023

A343599 T(n,k) is the coordination number of the (n+1)-dimensional cubic lattice for radius k; triangle read by rows, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 4, 1, 6, 18, 1, 8, 32, 88, 1, 10, 50, 170, 450, 1, 12, 72, 292, 912, 2364, 1, 14, 98, 462, 1666, 4942, 12642, 1, 16, 128, 688, 2816, 9424, 27008, 68464, 1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 1, 20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, 1, 22, 242, 1782, 9922, 44726, 170610, 568150, 1690370, 4573910, 11414898
Offset: 0

Views

Author

R. J. Mathar, Apr 21 2021

Keywords

Examples

			The full array starts
     1      2      2      2      2      2      2      2      2
     1      4      8     12     16     20     24     28     32
     1      6     18     38     66    102    146    198    258
     1      8     32     88    192    360    608    952   1408
     1     10     50    170    450   1002   1970   3530   5890
     1     12     72    292    912   2364   5336  10836  20256
     1     14     98    462   1666   4942  12642  28814  59906
     1     16    128    688   2816   9424  27008  68464 157184
     1     18    162    978   4482  16722  53154 148626 374274
		

Crossrefs

Cf. A035607 (by antidiags), A008574 (n=1), A005899 (n=2), A008412 (n=3), A008413 (n=4), A008414 (n=5), A001105 (k=2), A035597 (k=3), A035598 (k=4).
Main diagonal gives A050146(n+1).

Programs

  • Maple
    A343599 := proc(n,k)
        local g,x,y ;
        g := (1+y)/(1-x-y-x*y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
  • Mathematica
    T[n_, k_] := Module[{x, y}, SeriesCoefficient[(1 + y)/(1 - x - y - x*y), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)

Formula

G.f.: (1+y)/(1-x-y-x*y).
T(n,k) = A008288(n,k) + A008288(n,k-1).

A178073 Partial sums of sequence A177342.

Original entry on oeis.org

1, 10, 41, 116, 265, 526, 945, 1576, 2481, 3730, 5401, 7580, 10361, 13846, 18145, 23376, 29665, 37146, 45961, 56260, 68201, 81950, 97681, 115576, 135825, 158626, 184185, 212716, 244441, 279590, 318401, 361120, 408001, 459306, 515305
Offset: 1

Views

Author

Bruno Berselli, May 31 2010

Keywords

Comments

a(n)==1 (mod n+1). E.g., a(4)=116 and 116==1 (mod 5), a(11)=5401 and 5401==1 (mod 12).
Inverse binomial transform of this sequence: 1, 9, 22, 22, 8, 0, 0 (0 continued).

Programs

Formula

a(n) = n*(n^3+n^2+2*n-1)/3.
G.f.: x*(1+5*x+x^2+x^3)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) with n>5.
a(n)+a(-n) = A035598(n). [Bruno Berselli, Jun 21 2012]

Extensions

Edited by Bruno Berselli, Dec 29 2010
Showing 1-5 of 5 results.