A227327 Number of non-equivalent ways to choose two points in an equilateral triangle grid of side n.
0, 1, 4, 10, 22, 41, 72, 116, 180, 265, 380, 526, 714, 945, 1232, 1576, 1992, 2481, 3060, 3730, 4510, 5401, 6424, 7580, 8892, 10361, 12012, 13846, 15890, 18145, 20640, 23376, 26384, 29665, 33252, 37146, 41382, 45961, 50920, 56260, 62020, 68201, 74844
Offset: 1
Examples
for n = 3 there are the following 4 choices of 2 points (X) (rotations and reflections being ignored): X X X . X . . . . . X X . . . X . . . X . . . .
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
Crossrefs
Programs
-
Mathematica
Table[b = n^4 + 2*n^3 + 8*n^2; If[EvenQ[n], c = b - 8*n, c = b - 2*n - 9]; c/48, {n, 43}] (* T. D. Noe, Jul 09 2013 *) CoefficientList[Series[-x (x^3 - x^2 + x + 1) / ((x - 1)^5 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 02 2013 *) LinearRecurrence[{3,-1,-5,5,1,-3,1},{0,1,4,10,22,41,72},50] (* Harvey P. Dale, May 11 2019 *)
Formula
a(n) = (n^4 + 2*n^3 + 8*n^2 - 8*n )/48; if n even.
a(n) = (n^4 + 2*n^3 + 8*n^2 - 2*n - 9)/48; if n odd.
G.f.: -x^2*(x^3-x^2+x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Jul 12 2013
Comments