cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A234350 Triangle T(n, k) = Number of non-equivalent (mod D_3) ways to arrange k indistinguishable points on a triangular grid of side n so that no three points are collinear. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 5, 2, 3, 10, 22, 24, 8, 1, 4, 22, 77, 153, 140, 47, 2, 5, 41, 217, 713, 1290, 1112, 322, 15, 7, 72, 530, 2557, 7374, 11743, 8783, 2412, 143, 1, 8, 116, 1149, 7661, 32477, 82988, 116154, 77690, 19621, 1220, 5, 10, 180, 2288, 20055, 116420, 433372
Offset: 1

Views

Author

Heinrich Ludwig, Dec 24 2013

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A234349(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three points are collinear is given by A234349(n).
Without the restriction "non-equivalent (mod D_3)" the numbers are given by A194136.

Examples

			Triangle begins
1;
1,   1,    1;
2,   4,    5,    2;
3,  10,   22,   24,     8,     1;
4,  22,   77,  153,   140,    47,      2;
5,  41,  217,  713,  1290,  1112,    322,    15;
7,  72,  530, 2557,  7374, 11743,   8783,  2412,   143,    1;
8, 116, 1149, 7661, 32477, 82988, 116154, 77690, 19621, 1220, 5;
...
There are e.g. T(8, 11) = 5 non-equivalent ways to arrange 11 indistinguishable points (X) on a triangular grid of side 8 so that no point triple is collinear. As examples of the 5 solutions the 2 symmetrical ones are shown.
          .                    .
         . .                  . .
        . X .                . X .
       X . . X              X . . X
      X . . . X            . X . X .
     . . X X . .          X . . . . X
    . X . . . X .        . . X . X . .
   . . X . . X . .      . . X . . X . .
		

Crossrefs

Row lengths are given by A234349
Column 1 is A001399
Column 2 is A227327 for n >= 2
Column 3 is A234351
Column 4 is A234352
Column 5 is A234353
Column 6 is A234354.

A243141 Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle of any orientation. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 1, 3, 10, 19, 22, 7, 1, 4, 22, 75, 170, 204, 115, 18, 1, 5, 41, 218, 816, 1891, 2635, 1909, 628, 58, 3, 7, 72, 542, 2947, 10846, 26695, 41770, 39218, 19905, 4776, 437, 13, 8, 116, 1178, 8765, 46068, 171700, 444117, 776276, 876012, 601078, 229941
Offset: 1

Views

Author

Heinrich Ludwig, May 30 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A240114(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle is given by A240114(n).

Examples

			The triangle begins:
  1;
  1,  1;
  2,  4,   3,    1;
  3, 10,  19,   22,     7,     1;
  4, 22,  75,  170,   204,   115,    18,     1;
  5, 41, 218,  816,  1891,  2635,  1909,   628,    58,    3;
  7, 72, 542, 2947, 10846, 26695, 41770, 39218, 19905, 4776, 437, 13;
  ...
There is exactly T(5, 8) = 1 way to place 8 points (x) on a triangular grid of side 5 according to the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
		

Crossrefs

Cf. A240114, A240439, A001399 (column 1), A227327 (column 2), A243142 (column 3), A243143 (column 4), A243144 (column 5).

A243207 Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 1, 3, 10, 20, 25, 11, 3, 4, 22, 77, 186, 266, 221, 86, 14, 5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1, 7, 72, 552, 3146, 12907, 38640, 83107, 126701, 132236, 90214, 37128, 8235, 775, 24, 8, 116, 1196, 9264, 53307, 232861, 773930
Offset: 1

Views

Author

Heinrich Ludwig, Jun 01 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A227308(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle with sides parallel to the grid is given by A227308(n).

Examples

			The triangle begins:
  1;
  1,  1;
  2,  4,   3,   1;
  3, 10,  20,  25,   11,    3;
  4, 22,  77, 186,  266,  221,   86,   14;
  5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1;
  ...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
      . x x x x .
		

Crossrefs

Cf. A227308, A243211, A239572, A234247, A231655, A243141, A001399 (column 1), A227327 (column 2), A243208 (column 3), A243209 (column 4), A243210 (column 5).

A243208 Number of inequivalent (mod D_3) ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle with sides parallel to the grid.

Original entry on oeis.org

0, 3, 20, 77, 223, 552, 1196, 2380, 4388, 7657, 12710, 20301, 31297, 46892, 68426, 97674, 136596, 187713, 253770, 338217, 444773, 578018, 742852, 945210, 1191398, 1488949, 1845824, 2271415, 2775605, 3369930, 4066480, 4879238, 5822810, 6913947, 8170098, 9611127, 11257671
Offset: 2

Views

Author

Heinrich Ludwig, Jun 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^3*(-3 - 11*x - 17*x^2 - 13*x^3 - 14*x^4 - x^5 - 2*x^6 + x^7) / ((-1+x)^7 * (1+x)^3 * (1+x+x^2)), {x, 0, 50}], x],2] (* Vaclav Kotesovec, Jun 02 2014 *)

Formula

a(n) = (n^6 + 3*n^5 - 3*n^4 - 2*n^3 - 48*n^2 + 48*n)/288 + IF(MOD(n, 2) = 1)*(3*n^2 - 9*n - 1)/32 + IF(MOD(n, 3) = 1)*2/9.
G.f.: x^3*(-3 - 11*x - 17*x^2 - 13*x^3 - 14*x^4 - x^5 - 2*x^6 + x^7) / ((-1+x)^7 * (1+x)^3 * (1+x+x^2)). - Vaclav Kotesovec, Jun 02 2014
a(n) = 3*a(n-1) - 7*a(n-3) + 3*a(n-4) + 6*a(n-5) - 6*a(n-7) - 3*a(n-8) + 7*a(n-9) - 3*a(n-11) + a(n-12). - Vaclav Kotesovec, Jun 02 2014

A243209 Number of inequivalent (mod D_3) ways to place 4 points on a triangular grid of side n so that they are not vertices of an equilateral triangle with sides parallel to the grid.

Original entry on oeis.org

1, 25, 186, 881, 3146, 9264, 23810, 55058, 117205, 233135, 438544, 786541, 1354696, 2252202, 3630684, 5694984, 8718963, 13060515, 19184110, 27681103, 39300096, 54974216, 75861038, 103377456, 139251749, 185567453, 244828780, 320015885, 414665890, 532940080
Offset: 3

Views

Author

Heinrich Ludwig, Jun 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[-x^3*(1 + 22*x + 111*x^2 + 329*x^3 + 653*x^4 + 936*x^5 + 1146*x^6 + 1200*x^7 + 1150*x^8 + 900*x^9 + 650*x^10 + 286*x^11 + 131*x^12 + 28*x^13 + 19*x^14 - 5*x^15 + 3*x^16) / ((-1+x)^9 * (1+x)^4 * (1-x+x^2) * (1+x+x^2)^3), {x, 0, 40}], x],3] (* Vaclav Kotesovec, Jun 02 2014 *)

Formula

a(n) = (n^8 + 4*n^7 - 6*n^6 - 80*n^5 + 60*n^4 + 208*n^3 + 464*n^2 - 1152*n)/2304 + IF(MOD(n, 2) = 1)*(28*n^3 - 206*n^2 + 312*n + 33)/768 + IF(MOD(n, 3) = 1)*(n^2 - 2*n + 4)/18 + IF(MOD(n, 6) = 1)*(- 1/6).
G.f.: -x^3*(1 + 22*x + 111*x^2 + 329*x^3 + 653*x^4 + 936*x^5 + 1146*x^6 + 1200*x^7 + 1150*x^8 + 900*x^9 + 650*x^10 + 286*x^11 + 131*x^12 + 28*x^13 + 19*x^14 - 5*x^15 + 3*x^16) / ((-1+x)^9 * (1+x)^4 * (1-x+x^2) * (1+x+x^2)^3). - Vaclav Kotesovec, Jun 02 2014
a(n) = 3*a(n-1) - 6*a(n-3) + 6*a(n-5) + 8*a(n-6) - 12*a(n-7) - 9*a(n-8) + 13*a(n-9) + 6*a(n-10) - 6*a(n-11) - 13*a(n-12) + 9*a(n-13) + 12*a(n-14) - 8*a(n-15) - 6*a(n-16) + 6*a(n-18) - 3*a(n-20) + a(n-21). - Vaclav Kotesovec, Jun 02 2014

A230723 Number of non-equivalent ways to choose three points in an equilateral triangle grid of side n.

Original entry on oeis.org

0, 1, 6, 25, 87, 238, 575, 1228, 2425, 4446, 7734, 12806, 20422, 31444, 47072, 68639, 97929, 136893, 188061, 254170, 338679, 445297, 578616, 743524, 945968, 1192243, 1489894, 1846869, 2272575, 2776880, 3371335, 4068016, 4880921, 5824640, 6915942, 8172258, 9613470
Offset: 1

Views

Author

Heinrich Ludwig, Oct 28 2013

Keywords

Examples

			for n = 3 there are the following a(3) = 6 choices of 3 points (=X) (rotations and reflections ignored):
    X         .         .         X         .         X
   . .       X X       . .       X X       . X       X .
  X . X     . X .     X X X     . . .     X . X     . X .
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{0,1,6,25,87,238,575,1228,2425,4446,7734,12806},40] (* Harvey P. Dale, Oct 24 2020 *)

Formula

a(n) = (n^6 + 3*n^5 - 3*n^4 + 10*n^3 + B + C)/288
where
B = 27*n^2 + 3*n - 9 if n odd
B = 48*n otherwise
and
C = -32 if n == 1 (mod 3)
C = 0 otherwise
G.f.: x^2*(1 + 3*x + 7*x^2 + 19*x^3 + 16*x^4 + 12*x^5 + x^6 + 2*x^7 - x^8)/((1-x^3) * (1-x^2)^3 * (1-x)^3). - Ralf Stephan, Nov 03 2013

A231653 Number of non-equivalent ways to choose 4 points in an equilateral triangle grid of side n.

Original entry on oeis.org

0, 0, 4, 41, 244, 1029, 3485, 9926, 25030, 57126, 120570, 238330, 446344, 797825, 1370684, 2274259, 3660612, 5734776, 8771181, 13127940, 19270240, 27789713, 39435814, 55142010, 76066910, 103627784, 139554142, 185929971, 245260890, 320527585, 415268815
Offset: 1

Views

Author

Heinrich Ludwig, Nov 12 2013

Keywords

Examples

			For n = 3 there are the following a(3) = 4 choices of 4 points (=X) (rotations and reflections ignored):
    X        .        X        X
   X X      X X      X X      . .
  . X .    X . X    . . X    X X X
		

Crossrefs

Formula

a(n) = (n^8 + 4*n^7 - 6*n^6 - 32*n^5 + 84*n^4 - 32*n^3 - 16*n^2 - 192*n + B + C)/2304
where
B = 84*n^3 - 234*n^2 + 168*n + 171 if n==1 (mod 2)
= 0 otherwise
and
C = 128*n^2 + 128*n - 256 if n==1 (mod 3)
= 0 otherwise
G.f.: -x^3*(x^14 +7*x^12 +26*x^11 +146*x^10 +432*x^9 +947*x^8 +1418*x^7 +1621*x^6 +1405*x^5 +932*x^4 +438*x^3 +150*x^2 +33*x +4) / ((x -1)^9*(x +1)^4*(x^2 +x +1)^3). - Colin Barker, Feb 15 2014

A231655 Triangle T(n, k) read by rows giving number of non-equivalent ways to choose k points in an equilateral triangle grid of side n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 4, 2, 1, 1, 3, 10, 25, 41, 48, 41, 25, 10, 3, 1, 1, 4, 22, 87, 244, 526, 870, 1110, 1110, 870, 526, 244, 87, 22, 4, 1, 1, 5, 41, 238, 1029, 3450, 9147, 19524, 34104, 49231, 59038, 59038, 49231, 34104, 19524, 9147, 3450, 1029, 238
Offset: 0

Views

Author

Heinrich Ludwig, Nov 14 2013

Keywords

Comments

Number of orbits under dihedral group D_6 of order 6. - N. J. A. Sloane, Sep 12 2019

Examples

			Triangle T(n, k) is irregularly shaped: 0 <= k <= n*(n+1)/2+1. The first row corresponds to n = 1, the first column corresponds to k = 0. Rows are palindromic.
  1,  1;
  1,  1,  1,  1;
  1,  2,  4,  6,  4,  2,  1;
  1,  3, 10, 25, 41, 48, 41, 25, 10,  3,  1;
  ...
There are T(3, 2) = 4 nonisomorphic choices of 2 points (X) in an equilateral triangle grid of side 3:
      X       .       .       X
     . .     X X     . .     X .
    . X .   . . .   X . X   . . .
		

Crossrefs

A243142 Number of inequivalent (mod D_3) ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 3, 19, 75, 218, 542, 1178, 2350, 4340, 7585, 12605, 20153, 31094, 46620, 68068, 97212, 136008, 186975, 252855, 337095, 443410, 576378, 740894, 942890, 1188668, 1485757, 1842113, 2267125, 2770670, 3364280, 4060040, 4871928, 5814544, 6904635, 8159643, 9599427
Offset: 2

Views

Author

Heinrich Ludwig, May 30 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3) / ((x-1)^7*(x+1)^3), {x, 0, 40}], x],2] (* Vaclav Kotesovec, May 31 2014 after Colin Barker *)
  • PARI
    concat(0, Vec(x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3)/((x-1)^7*(x+1)^3) + O(x^100))) \\ Colin Barker, May 30 2014

Formula

a(n) = (n^6 + 3*n^5 - 5*n^4 + 6*n^3 - 68*n^2 + 72*n + IF(MOD(n, 2) = 1)*(27*n^2 - 81*n + 45))/288.
G.f.: x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3) / ((x-1)^7*(x+1)^3). - Colin Barker, May 30 2014

A243143 Number of inequivalent (mod D_3) ways to place 4 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

1, 22, 170, 816, 2947, 8765, 22703, 52823, 113042, 225817, 426299, 766905, 1324282, 2206478, 3563770, 5599258, 8584775, 12875840, 18934040, 27347390, 38860741, 54402707, 75125825, 102441321, 138070912, 184090795, 242997153, 317760863, 411908932, 529591532, 675681764
Offset: 3

Views

Author

Heinrich Ludwig, May 30 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[-x^3*(3*x^10 - 10*x^9 + 19*x^8 - 13*x^7 + 102*x^6 + 105*x^5 + 144*x^4 + 125*x^3 + 67*x^2 + 17*x + 1) / ((x-1)^9*(x+1)^4*(x^2+1)), {x, 0, 40}], x],3] (* Vaclav Kotesovec, May 31 2014 after Colin Barker *)

Formula

a(n) = (n^8 + 4*n^7 - 14*n^6 - 56*n^5 + 136*n^4 - 104*n^3 + 552*n^2 - 672*n)/2304 + IF(MOD(n, 2) = 1)*(28*n^3 - 198*n^2 + 296*n + 21)/768 + IF(MOD(n-1, 4) <= 1)*(-1/8).
G.f.: -x^3*(3*x^10 -10*x^9 +19*x^8 -13*x^7 +102*x^6 +105*x^5 +144*x^4 +125*x^3 +67*x^2 +17*x +1) / ((x -1)^9*(x +1)^4*(x^2 +1)). - Colin Barker, May 30 2014
Showing 1-10 of 14 results. Next