A234350
Triangle T(n, k) = Number of non-equivalent (mod D_3) ways to arrange k indistinguishable points on a triangular grid of side n so that no three points are collinear. Triangle read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 5, 2, 3, 10, 22, 24, 8, 1, 4, 22, 77, 153, 140, 47, 2, 5, 41, 217, 713, 1290, 1112, 322, 15, 7, 72, 530, 2557, 7374, 11743, 8783, 2412, 143, 1, 8, 116, 1149, 7661, 32477, 82988, 116154, 77690, 19621, 1220, 5, 10, 180, 2288, 20055, 116420, 433372
Offset: 1
Triangle begins
1;
1, 1, 1;
2, 4, 5, 2;
3, 10, 22, 24, 8, 1;
4, 22, 77, 153, 140, 47, 2;
5, 41, 217, 713, 1290, 1112, 322, 15;
7, 72, 530, 2557, 7374, 11743, 8783, 2412, 143, 1;
8, 116, 1149, 7661, 32477, 82988, 116154, 77690, 19621, 1220, 5;
...
There are e.g. T(8, 11) = 5 non-equivalent ways to arrange 11 indistinguishable points (X) on a triangular grid of side 8 so that no point triple is collinear. As examples of the 5 solutions the 2 symmetrical ones are shown.
. .
. . . .
. X . . X .
X . . X X . . X
X . . . X . X . X .
. . X X . . X . . . . X
. X . . . X . . . X . X . .
. . X . . X . . . . X . . X . .
A243141
Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle of any orientation. Triangle read by rows.
Original entry on oeis.org
1, 1, 1, 2, 4, 3, 1, 3, 10, 19, 22, 7, 1, 4, 22, 75, 170, 204, 115, 18, 1, 5, 41, 218, 816, 1891, 2635, 1909, 628, 58, 3, 7, 72, 542, 2947, 10846, 26695, 41770, 39218, 19905, 4776, 437, 13, 8, 116, 1178, 8765, 46068, 171700, 444117, 776276, 876012, 601078, 229941
Offset: 1
The triangle begins:
1;
1, 1;
2, 4, 3, 1;
3, 10, 19, 22, 7, 1;
4, 22, 75, 170, 204, 115, 18, 1;
5, 41, 218, 816, 1891, 2635, 1909, 628, 58, 3;
7, 72, 542, 2947, 10846, 26695, 41770, 39218, 19905, 4776, 437, 13;
...
There is exactly T(5, 8) = 1 way to place 8 points (x) on a triangular grid of side 5 according to the definition of the sequence:
.
x x
x . x
x . . x
x . . . x
A243207
Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.
Original entry on oeis.org
1, 1, 1, 2, 4, 3, 1, 3, 10, 20, 25, 11, 3, 4, 22, 77, 186, 266, 221, 86, 14, 5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1, 7, 72, 552, 3146, 12907, 38640, 83107, 126701, 132236, 90214, 37128, 8235, 775, 24, 8, 116, 1196, 9264, 53307, 232861, 773930
Offset: 1
The triangle begins:
1;
1, 1;
2, 4, 3, 1;
3, 10, 20, 25, 11, 3;
4, 22, 77, 186, 266, 221, 86, 14;
5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1;
...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
.
x x
x . x
x . . x
x . . . x
. x x x x .
Cf.
A227308,
A243211,
A239572,
A234247,
A231655,
A243141,
A001399 (column 1),
A227327 (column 2),
A243208 (column 3),
A243209 (column 4),
A243210 (column 5).
A243208
Number of inequivalent (mod D_3) ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle with sides parallel to the grid.
Original entry on oeis.org
0, 3, 20, 77, 223, 552, 1196, 2380, 4388, 7657, 12710, 20301, 31297, 46892, 68426, 97674, 136596, 187713, 253770, 338217, 444773, 578018, 742852, 945210, 1191398, 1488949, 1845824, 2271415, 2775605, 3369930, 4066480, 4879238, 5822810, 6913947, 8170098, 9611127, 11257671
Offset: 2
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1).
-
Drop[CoefficientList[Series[x^3*(-3 - 11*x - 17*x^2 - 13*x^3 - 14*x^4 - x^5 - 2*x^6 + x^7) / ((-1+x)^7 * (1+x)^3 * (1+x+x^2)), {x, 0, 50}], x],2] (* Vaclav Kotesovec, Jun 02 2014 *)
A243209
Number of inequivalent (mod D_3) ways to place 4 points on a triangular grid of side n so that they are not vertices of an equilateral triangle with sides parallel to the grid.
Original entry on oeis.org
1, 25, 186, 881, 3146, 9264, 23810, 55058, 117205, 233135, 438544, 786541, 1354696, 2252202, 3630684, 5694984, 8718963, 13060515, 19184110, 27681103, 39300096, 54974216, 75861038, 103377456, 139251749, 185567453, 244828780, 320015885, 414665890, 532940080
Offset: 3
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-6,0,6,8,-12,-9,13,6,-6,-13,9,12,-8,-6,0,6,0,-3,1).
-
Drop[CoefficientList[Series[-x^3*(1 + 22*x + 111*x^2 + 329*x^3 + 653*x^4 + 936*x^5 + 1146*x^6 + 1200*x^7 + 1150*x^8 + 900*x^9 + 650*x^10 + 286*x^11 + 131*x^12 + 28*x^13 + 19*x^14 - 5*x^15 + 3*x^16) / ((-1+x)^9 * (1+x)^4 * (1-x+x^2) * (1+x+x^2)^3), {x, 0, 40}], x],3] (* Vaclav Kotesovec, Jun 02 2014 *)
A230723
Number of non-equivalent ways to choose three points in an equilateral triangle grid of side n.
Original entry on oeis.org
0, 1, 6, 25, 87, 238, 575, 1228, 2425, 4446, 7734, 12806, 20422, 31444, 47072, 68639, 97929, 136893, 188061, 254170, 338679, 445297, 578616, 743524, 945968, 1192243, 1489894, 1846869, 2272575, 2776880, 3371335, 4068016, 4880921, 5824640, 6915942, 8172258, 9613470
Offset: 1
for n = 3 there are the following a(3) = 6 choices of 3 points (=X) (rotations and reflections ignored):
X . . X . X
. . X X . . X X . X X .
X . X . X . X X X . . . X . X . X .
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-7,3,6,0,-6,-3,7,0,-3,1)
-
LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{0,1,6,25,87,238,575,1228,2425,4446,7734,12806},40] (* Harvey P. Dale, Oct 24 2020 *)
A231653
Number of non-equivalent ways to choose 4 points in an equilateral triangle grid of side n.
Original entry on oeis.org
0, 0, 4, 41, 244, 1029, 3485, 9926, 25030, 57126, 120570, 238330, 446344, 797825, 1370684, 2274259, 3660612, 5734776, 8771181, 13127940, 19270240, 27789713, 39435814, 55142010, 76066910, 103627784, 139554142, 185929971, 245260890, 320527585, 415268815
Offset: 1
For n = 3 there are the following a(3) = 4 choices of 4 points (=X) (rotations and reflections ignored):
X . X X
X X X X X X . .
. X . X . X . . X X X X
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,3,-5,-8,3,19,4,-24,-15,15,24,-4,-19,-3,8,5,-3,-2,1).
A231655
Triangle T(n, k) read by rows giving number of non-equivalent ways to choose k points in an equilateral triangle grid of side n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 4, 2, 1, 1, 3, 10, 25, 41, 48, 41, 25, 10, 3, 1, 1, 4, 22, 87, 244, 526, 870, 1110, 1110, 870, 526, 244, 87, 22, 4, 1, 1, 5, 41, 238, 1029, 3450, 9147, 19524, 34104, 49231, 59038, 59038, 49231, 34104, 19524, 9147, 3450, 1029, 238
Offset: 0
Triangle T(n, k) is irregularly shaped: 0 <= k <= n*(n+1)/2+1. The first row corresponds to n = 1, the first column corresponds to k = 0. Rows are palindromic.
1, 1;
1, 1, 1, 1;
1, 2, 4, 6, 4, 2, 1;
1, 3, 10, 25, 41, 48, 41, 25, 10, 3, 1;
...
There are T(3, 2) = 4 nonisomorphic choices of 2 points (X) in an equilateral triangle grid of side 3:
X . . X
. . X X . . X .
. X . . . . X . X . . .
A243142
Number of inequivalent (mod D_3) ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.
Original entry on oeis.org
0, 3, 19, 75, 218, 542, 1178, 2350, 4340, 7585, 12605, 20153, 31094, 46620, 68068, 97212, 136008, 186975, 252855, 337095, 443410, 576378, 740894, 942890, 1188668, 1485757, 1842113, 2267125, 2770670, 3364280, 4060040, 4871928, 5814544, 6904635, 8159643, 9599427
Offset: 2
- Heinrich Ludwig, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-8,14,0,-14,8,3,-4,1).
-
Drop[CoefficientList[Series[x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3) / ((x-1)^7*(x+1)^3), {x, 0, 40}], x],2] (* Vaclav Kotesovec, May 31 2014 after Colin Barker *)
-
concat(0, Vec(x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3)/((x-1)^7*(x+1)^3) + O(x^100))) \\ Colin Barker, May 30 2014
A243143
Number of inequivalent (mod D_3) ways to place 4 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.
Original entry on oeis.org
1, 22, 170, 816, 2947, 8765, 22703, 52823, 113042, 225817, 426299, 766905, 1324282, 2206478, 3563770, 5599258, 8584775, 12875840, 18934040, 27347390, 38860741, 54402707, 75125825, 102441321, 138070912, 184090795, 242997153, 317760863, 411908932, 529591532, 675681764
Offset: 3
- Heinrich Ludwig, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-7,-5,23,-19,-7,27,-27,7,19,-23,5,7,-5,1).
-
Drop[CoefficientList[Series[-x^3*(3*x^10 - 10*x^9 + 19*x^8 - 13*x^7 + 102*x^6 + 105*x^5 + 144*x^4 + 125*x^3 + 67*x^2 + 17*x + 1) / ((x-1)^9*(x+1)^4*(x^2+1)), {x, 0, 40}], x],3] (* Vaclav Kotesovec, May 31 2014 after Colin Barker *)
Showing 1-10 of 14 results.
Comments