cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A243207 Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 1, 3, 10, 20, 25, 11, 3, 4, 22, 77, 186, 266, 221, 86, 14, 5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1, 7, 72, 552, 3146, 12907, 38640, 83107, 126701, 132236, 90214, 37128, 8235, 775, 24, 8, 116, 1196, 9264, 53307, 232861, 773930
Offset: 1

Views

Author

Heinrich Ludwig, Jun 01 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A227308(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle with sides parallel to the grid is given by A227308(n).

Examples

			The triangle begins:
  1;
  1,  1;
  2,  4,   3,   1;
  3, 10,  20,  25,   11,    3;
  4, 22,  77, 186,  266,  221,   86,   14;
  5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1;
  ...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
      . x x x x .
		

Crossrefs

Cf. A227308, A243211, A239572, A234247, A231655, A243141, A001399 (column 1), A227327 (column 2), A243208 (column 3), A243209 (column 4), A243210 (column 5).

A231653 Number of non-equivalent ways to choose 4 points in an equilateral triangle grid of side n.

Original entry on oeis.org

0, 0, 4, 41, 244, 1029, 3485, 9926, 25030, 57126, 120570, 238330, 446344, 797825, 1370684, 2274259, 3660612, 5734776, 8771181, 13127940, 19270240, 27789713, 39435814, 55142010, 76066910, 103627784, 139554142, 185929971, 245260890, 320527585, 415268815
Offset: 1

Views

Author

Heinrich Ludwig, Nov 12 2013

Keywords

Examples

			For n = 3 there are the following a(3) = 4 choices of 4 points (=X) (rotations and reflections ignored):
    X        .        X        X
   X X      X X      X X      . .
  . X .    X . X    . . X    X X X
		

Crossrefs

Formula

a(n) = (n^8 + 4*n^7 - 6*n^6 - 32*n^5 + 84*n^4 - 32*n^3 - 16*n^2 - 192*n + B + C)/2304
where
B = 84*n^3 - 234*n^2 + 168*n + 171 if n==1 (mod 2)
= 0 otherwise
and
C = 128*n^2 + 128*n - 256 if n==1 (mod 3)
= 0 otherwise
G.f.: -x^3*(x^14 +7*x^12 +26*x^11 +146*x^10 +432*x^9 +947*x^8 +1418*x^7 +1621*x^6 +1405*x^5 +932*x^4 +438*x^3 +150*x^2 +33*x +4) / ((x -1)^9*(x +1)^4*(x^2 +x +1)^3). - Colin Barker, Feb 15 2014

A231654 Number of non-equivalent ways to choose 5 points in an equilateral triangle grid of side n.

Original entry on oeis.org

0, 0, 2, 48, 526, 3450, 16536, 63104, 204202, 580669, 1491096, 3520768, 7754502, 16098425, 31770760, 59998736, 109022244, 191454654, 326158974, 540703008, 874630262, 1383621756, 2144889472, 3263884272, 4882793214, 7190910467, 10437526372, 14947411024
Offset: 1

Views

Author

Heinrich Ludwig, Nov 13 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ[n], b = 0, b = 375*n^4 - 1170*n^3 + 210*n^2 - 405*n + 1035]; (n^10 + 5*n^9 - 10*n^8 - 70*n^7 + 25*n^6 + 584*n^5 - 420*n^4 - 480*n^3 - 1216*n^2 + 1536*n + b)/23040, {n, 30}] (* T. D. Noe, Nov 14 2013 *)

Formula

a(n) = (n^10 + 5*n^9 - 10*n^8 - 70*n^7 + 25*n^6 + 584*n^5 - 420*n^4 - 480*n^3 - 1216*n^2 + 1536*n + B)/23040 where B = 375*n^4 - 1170*n^3 + 210*n^2 - 405*n + 1035 if n odd, and B = 0 if n even.
G.f.: x^3*(x^11 -4*x^10 +14*x^9 -78*x^8 -189*x^7 -902*x^6 -1316*x^5 -1476*x^4 -794*x^3 -258*x^2 -36*x -2) / ((x -1)^11*(x +1)^5). - Colin Barker, Feb 15 2014
Showing 1-3 of 3 results.