cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A231653 Number of non-equivalent ways to choose 4 points in an equilateral triangle grid of side n.

Original entry on oeis.org

0, 0, 4, 41, 244, 1029, 3485, 9926, 25030, 57126, 120570, 238330, 446344, 797825, 1370684, 2274259, 3660612, 5734776, 8771181, 13127940, 19270240, 27789713, 39435814, 55142010, 76066910, 103627784, 139554142, 185929971, 245260890, 320527585, 415268815
Offset: 1

Views

Author

Heinrich Ludwig, Nov 12 2013

Keywords

Examples

			For n = 3 there are the following a(3) = 4 choices of 4 points (=X) (rotations and reflections ignored):
    X        .        X        X
   X X      X X      X X      . .
  . X .    X . X    . . X    X X X
		

Crossrefs

Formula

a(n) = (n^8 + 4*n^7 - 6*n^6 - 32*n^5 + 84*n^4 - 32*n^3 - 16*n^2 - 192*n + B + C)/2304
where
B = 84*n^3 - 234*n^2 + 168*n + 171 if n==1 (mod 2)
= 0 otherwise
and
C = 128*n^2 + 128*n - 256 if n==1 (mod 3)
= 0 otherwise
G.f.: -x^3*(x^14 +7*x^12 +26*x^11 +146*x^10 +432*x^9 +947*x^8 +1418*x^7 +1621*x^6 +1405*x^5 +932*x^4 +438*x^3 +150*x^2 +33*x +4) / ((x -1)^9*(x +1)^4*(x^2 +x +1)^3). - Colin Barker, Feb 15 2014

A231655 Triangle T(n, k) read by rows giving number of non-equivalent ways to choose k points in an equilateral triangle grid of side n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 4, 2, 1, 1, 3, 10, 25, 41, 48, 41, 25, 10, 3, 1, 1, 4, 22, 87, 244, 526, 870, 1110, 1110, 870, 526, 244, 87, 22, 4, 1, 1, 5, 41, 238, 1029, 3450, 9147, 19524, 34104, 49231, 59038, 59038, 49231, 34104, 19524, 9147, 3450, 1029, 238
Offset: 0

Views

Author

Heinrich Ludwig, Nov 14 2013

Keywords

Comments

Number of orbits under dihedral group D_6 of order 6. - N. J. A. Sloane, Sep 12 2019

Examples

			Triangle T(n, k) is irregularly shaped: 0 <= k <= n*(n+1)/2+1. The first row corresponds to n = 1, the first column corresponds to k = 0. Rows are palindromic.
  1,  1;
  1,  1,  1,  1;
  1,  2,  4,  6,  4,  2,  1;
  1,  3, 10, 25, 41, 48, 41, 25, 10,  3,  1;
  ...
There are T(3, 2) = 4 nonisomorphic choices of 2 points (X) in an equilateral triangle grid of side 3:
      X       .       .       X
     . .     X X     . .     X .
    . X .   . . .   X . X   . . .
		

Crossrefs

Showing 1-2 of 2 results.