cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035603 Number of points of L1 norm 9 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 36, 326, 1992, 9290, 35436, 115598, 332688, 864146, 2060980, 4573910, 9545560, 18892250, 35704060, 64797470, 113461024, 192441122, 317222212, 509663334, 800061160, 1229718378, 1854105484, 2746713774, 4003707568
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(4*n^9+168*n^7+1596*n^5+3272*n^3+630*n)/2835: n in [0..30]]; // Vincenzo Librandi, Apr 24 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^8/(1-x)^10,{x,0,30}],x] (* Vincenzo Librandi, Apr 24 2012 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,2,36,326,1992,9290,35436,115598,332688,864146},30] (* Harvey P. Dale, Jan 17 2021 *)
  • PARI
    a(n)=(4*n^9+168*n^7+1596*n^5+3272*n^3+630*n)/2835 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = (4*n^9 + 168*n^7 + 1596*n^5 + 3272*n^3 + 630*n)/(5*7*9*9). - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^8/(1-x)^10. - Colin Barker, Apr 15 2012
a(n) = 2*A099196(n). - R. J. Mathar, Dec 10 2013