A035605 Number of points of L1 norm 11 in cubic lattice Z^n.
0, 2, 44, 486, 3608, 20330, 93060, 361550, 1229360, 3742290, 10377180, 26572086, 63521352, 143027898, 305568564, 623207070, 1219605600, 2300164770, 4196289420, 7428962950, 12798246520, 21507034122
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - _N. J. A. Sloane_, Feb 13 2013
- M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- Joan Serra-Sagrista, Enumeration of lattice points in l_1 norm, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Programs
-
Magma
[(2*n*(14175+83754*n^2+50270*n^4+7392*n^6+330*n^8+ 4*n^10))/155925: n in [0..30]]; /* or */ I:=[0, 2, 44, 486, 3608, 20330, 93060, 361550, 1229360, 3742290, 10377180, 26572086]; [n le 12 select I[n] else 12*Self(n-1)-66*Self(n-2)+220*Self(n-3)-495*Self(n-4)+792*Self(n-5)-924*Self(n-6)+792*Self(n-7)-495*Self(n-8)+220*Self(n-9)-66*Self(n-10)+12*Self(n-11)-Self(n-12): n in [1..31]]; // Vincenzo Librandi, Apr 24 2012
-
Maple
f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
-
Mathematica
CoefficientList[Series[2*x*(1+x)^10/(1-x)^12,{x,0,30}],x] (* Vincenzo Librandi, Apr 24 2012 *) LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{0,2,44,486,3608,20330,93060,361550,1229360,3742290,10377180,26572086},30] (* Harvey P. Dale, Dec 23 2016 *)
Formula
From Colin Barker, Apr 15 2012: (Start)
a(n) = (2*n*(14175 + 83754*n^2 + 50270*n^4 + 7392*n^6 + 330*n^8 + 4*n^10))/155925.
G.f.: 2*x*(1+x)^10/(1-x)^12. (End)