cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035606 Number of points of L1 norm 12 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 48, 578, 4672, 28610, 142000, 596610, 2187520, 7159170, 21278640, 58227906, 148321344, 354870594, 803467056, 1732242690, 3575055360, 7094825730, 13591279920, 25216532290, 45443741760, 79749022402
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    I:=[0, 2, 48, 578, 4672, 28610, 142000, 596610, 2187520, 7159170, 21278640, 58227906, 148321344]; [n le 13 select I[n] else 13*Self(n-1)-78*Self(n-2)+286*Self(n-3)-715*Self(n-4)+1287*Self(n-5)-1716*Self(n-6)+1716*Self(n-7)-1287*Self(n-8)+715*Self(n-9)-286*Self(n-10)+78*Self(n-11)-13*Self(n-12)+Self(n-13): n in [1..30]]; // Vincenzo Librandi, Apr 24 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^11/(1-x)^13,{x,0,30}],x](* Vincenzo Librandi, Apr 24 2012 *)
    LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{0,2,48,578,4672,28610,142000,596610,2187520,7159170,21278640,58227906,148321344},40] (* Harvey P. Dale, May 29 2021 *)

Formula

From Colin Barker, Apr 15 2012: (Start)
a(n) = 2*n^2*(146430 + 239327*n^2 + 74800*n^4 + 6996*n^6 + 220*n^8 + 2*n^10)/467775.
G.f.: 2*x*(1+x)^11/(1-x)^13. (End)