A035796 Words over signatures (derived from multisets and multinomials).
1, 1, 2, 2, 3, 18, 4, 48, 6, 5, 36, 100, 144, 6, 200, 180, 600, 7, 450, 900, 294, 24, 300, 1800, 8, 882, 7200, 448, 1200, 1470, 4410, 9, 1568, 22050, 648, 7200, 3136, 1800, 9408, 10, 14700, 2592, 16200, 1960, 56448, 900, 29400, 6048, 22050, 18144
Offset: 1
Keywords
Examples
27 = a(5) + a(6) + a(9) since a8(4) = 3, a12(5) = 18, a30(8) = 6; 256 = a(7) + a(8) + a(11) + a(13) + a(22) = 4 + 48 + 36 + 144 + 24 27 = a(5) + a(6) + a(9) = A049009(4) + A049009(5) + A049009(6) = 3 + 18 + 6 since A036035(4) = 8 = A025487(4+1), A036035(5) = 12 = A025487(5+1), A036035(6) = 30 = A025487(8+1);...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
PARI
\\ here P is A025487 as vector and C is A049009 by partition. GenS(lim)={my(L=List(), S=[1]); forprime(p=2, oo, listput(L, S); my(pp=vector(logint(lim, p), i, p^i)); S=concat([k*pp[1..min(if(k>1, my(f=factor(k)[, 2]); f[#f], oo), logint(lim\k, p))] | k<-S]); if(!#S, return(Set(concat(L)))) )} P(n)={my(lim=1, v=[1]); while(#v
t==S[k], sig))!) * prod(k=1, #sig, sig[k]!))} seq(n)={[C(factor(t)[,2]) | t<-P(n)]} \\ Andrew Howroyd, Oct 18 2020
Formula
a(n) = A049009(p) where p is such that A036035(p) = A025487(n). [Corrected by Andrew Howroyd and Sean A. Irvine, Oct 18 2020]
Extensions
More terms and additional comments from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jul 02 2001
a(1)=1 inserted by Andrew Howroyd and Sean A. Irvine, Oct 18 2020
Comments