cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035878 Number of points of l_1 norm n in the "diamond" lattice D^+_4.

Original entry on oeis.org

1, 0, 40, 32, 272, 160, 888, 448, 2080, 960, 4040, 1760, 6960, 2912, 11032, 4480, 16448, 6528, 23400, 9120, 32080, 12320, 42680, 16192, 55392, 20800, 70408, 26208, 87920, 32480, 108120, 39680, 131200, 47872, 157352, 57120, 186768, 67488, 219640, 79040, 256160
Offset: 0

Views

Author

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

Keywords

Examples

			This 4D lattice consists of points with coordinates that have even sum and are either all integer or all half-integer. (It is actually similar to Z^4.) The a(2) = 40 lattice vectors having l_1 norm 2 include: +-(1,1,1,1)/2, 6 permutations of (1,1,-1,-1)/2, 6 permutations with 4 choices of signs in (+-1,+-1,0,0), and 4 permutations with 2 choices of signs in (+-2,0,0,0), totaling 2 + 6 + 6*4 + 4*2 = 40.
		

Crossrefs

Programs

  • Maple
    n := 4; A035878 := proc(m) global n; local k,t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1,n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n,k)*binomial(m-1,k-1),k=0..n); fi; t1; end;
  • Mathematica
    f[m_, n_] := 2^(n-1) *Binomial[(n + 2*m)/2 - 1, n - 1] + If[EvenQ[m], 2 *n* Hypergeometric2F1[1-m, 1-n, 2, 2], 0]; f[0, ] = 1; Table[f[m, 4], {m, 0, 32}] (* _Jean-François Alcover, Apr 18 2013, after Maple *)
    CoefficientList[Series[(x^8 + 36 x^6 + 32 x^5 + 118 x^4 + 32 x^3 + 36 x^2 + 1)/((x - 1)^4 (x + 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2013 *)

Formula

For n>0, a(n) = ( 2n^2 + 1 + (n^2+2)*(-1)^n ) * 4n/3.
G.f.: (x^8+36*x^6+32*x^5+118*x^4+32*x^3+36*x^2+1) / ((x-1)^4*(x+1)^4). - Colin Barker, Nov 18 2012

Extensions

Recomputed by N. J. A. Sloane, Nov 27 1998
More terms from Vincenzo Librandi, Oct 21 2013
Name edited by Andrey Zabolotskiy, Aug 29 2022