cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A035879 Coordination sequence for diamond structure D^+_6. (Edges defined by l_1 norm = 1.)

Original entry on oeis.org

1, 0, 72, 32, 1104, 672, 7128, 4032, 28320, 14784, 84072, 41184, 206064, 96096, 441336, 198016, 855360, 372096, 1535112, 651168, 2592144, 1076768, 4165656, 1700160, 6425568, 2583360, 9575592, 3800160, 13856304, 5437152, 19548216, 7594752, 26974848
Offset: 0

Views

Author

Joan Serra-Sagrista (jserra(AT)ccd.uab.es)

Keywords

Programs

  • Magma
    [1] cat [2*n*((2*n^4+20*n^2+23)*(-1)^n+(4*n^4+10*n^2+31))/15: n in [1..20]]; // Bruno Berselli, Oct 21 2013
  • Maple
    f := proc(m) local k,t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1,n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n,k)*binomial(m-1,k-1),k=0..n); fi; t1; end; where n=6.
  • Mathematica
    f[m_, n_] := 2^(n - 1)*Binomial[(n + 2*m)/2 - 1, n - 1] + If[EvenQ[m], 2*n*Hypergeometric2F1[1 - m, 1 - n, 2, 2], 0]; f[0, ] = 1; Table[f[m, 6], {m, 0, 27}] (* _Jean-François Alcover, Apr 18 2013, after Maple *)
    CoefficientList[Series[(x^12 + 66 x^10 + 32 x^9 + 687 x^8 + 480 x^7 + 1564 x^6 + 480 x^5 + 687 x^4 + 32 x^3 + 66 x^2 + 1)/((x - 1)^6 (x + 1)^6), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 21 2013 *)

Formula

G.f.: (x^12 + 66*x^10 + 32*x^9 + 687*x^8 + 480*x^7 + 1564*x^6 + 480*x^5 + 687*x^4 + 32*x^3 + 66*x^2 + 1) / ((x-1)^6*(x+1)^6). [Colin Barker, Nov 20 2012]
a(n) = 2*n*( (2*n^4+20*n^2+23)*(-1)^n + (4*n^4+10*n^2+31) )/15 for n>0, a(0)=1. [Bruno Berselli, Oct 21 2013]

Extensions

Recomputed by N. J. A. Sloane, Nov 27 1998
More terms from Vincenzo Librandi, Oct 21 2013