A035938 Number of partitions in parts not of the form 7k, 7k+2 or 7k-2. Also number of partitions with 1 part of size 1 and differences between parts at distance 2 are greater than 1.
1, 1, 1, 2, 3, 3, 5, 6, 8, 10, 13, 16, 21, 25, 31, 38, 47, 56, 69, 82, 99, 118, 141, 166, 199, 233, 275, 322, 379, 440, 516, 598, 696, 805, 933, 1074, 1242, 1425, 1639, 1878, 2154, 2458, 2812, 3202, 3650, 4148, 4716, 5344, 6064, 6857, 7758, 8758, 9888, 11136
Offset: 0
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 8*x^8 + ... G.f. = q^5 + q^47 + q^89 + 2*q^131 + 3*q^173 + 3*q^215 + 5*q^257 + ...
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, 1, 0, 1, 1, 0, 1][1+irem(d, 7)], d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=1..100); # Alois P. Heinz, Jan 22 2012
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*{0, 1, 0, 1, 1, 0, 1}[[1+Mod[d, 7]]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *) a[ n_] := SeriesCoefficient[ 1 / Product[ (1 - x^(7 k - 1)) (1 - x^(7 k - 3)) (1 - x^(7 k - 4)) (1 - x^(7 k - 6)), {k, Ceiling[n/7]}], {x, 0, n}]; (* Michael Somos, Dec 30 2014 *) a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^7] QPochhammer[ x^3, x^7] QPochhammer[ x^4, x^7] QPochhammer[ x^6, x^7] ), {x, 0, n}]; (* Michael Somos, Dec 30 2014 *)
-
PARI
{a(n) = my(A); if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - [0, 1, 0, 1, 1, 0, 1][k%7 + 1] * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Feb 03 2012 */
-
Sage
# See A035937 for GordonsTheorem def A035938_list(len) : return GordonsTheorem([1, 0, 1, 1, 0, 1, 0], len) A035938_list(40) # Peter Luschny, Jan 22 2012
Formula
Expansion of f(-x^2, -x^5) / f(-x, -x^2) in powers of x where f() is Ramanujan's two-variable theta function. - Michael Somos, Dec 30 2014
Euler transform of period 7 sequence [ 1, 0, 1, 1, 0, 1, 0, ...]. - Michael Somos, Feb 03 2012
G.f.: 1 / (Product_{k>0} (1 - x^(7*k - 6)) * (1 - x^(7*k - 4)) * (1 - x^(7*k - 3)) * (1 - x^(7*k - 1))). - Michael Somos, Feb 03 2012
G.f.: (Product_{k>0} (1 + x^k)) * (Sum_{k>0} x^(2*k + 2*k^2) / (Product_{i=1..k} (1 - x^(2*i)) * (1 + x^(2*i-1)) * (1 + x^(2*i)))).
a(n) ~ 2^(1/4) * cos(3*Pi/14) * exp(2*Pi*sqrt(2*n/21)) / (3^(1/4) * 7^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 13 2015
Comments