A035969 Number of partitions of n into parts not of the form 17k, 17k+8 or 17k-8. Also number of partitions with at most 7 parts of size 1 and differences between parts at distance 7 are greater than 1.
1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 39, 51, 69, 89, 117, 150, 194, 245, 313, 392, 494, 614, 766, 944, 1168, 1430, 1754, 2135, 2601, 3146, 3810, 4585, 5519, 6611, 7917, 9440, 11253, 13361, 15856, 18755, 22169, 26124, 30766, 36132, 42401, 49639, 58063
Offset: 0
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
nmax = 60; CoefficientList[Series[Product[(1 - x^(17*k))*(1 - x^(17*k+ 8-17))*(1 - x^(17*k- 8))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 10 2018 *)
Formula
a(n) ~ exp(2*Pi*sqrt(7*n/51)) * 7^(1/4) * cos(Pi/34) / (3^(1/4) * 17^(3/4) * n^(3/4)). - Vaclav Kotesovec, May 10 2018
Extensions
a(0)=1 prepended by Seiichi Manyama, May 08 2018
Comments