cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036015 Number of partitions of n into parts not of form 4k+2, 8k, 8k+1 or 8k-1.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 6, 7, 7, 8, 10, 12, 13, 14, 17, 21, 22, 24, 29, 33, 36, 40, 46, 53, 58, 63, 73, 83, 90, 99, 113, 127, 138, 152, 171, 191, 209, 228, 255, 285, 309, 338, 377, 416, 453, 495, 547, 603, 656, 714, 787, 865, 938, 1020, 1121, 1226
Offset: 0

Views

Author

Keywords

Comments

Case k=2,i=1 of Gordon/Goellnitz/Andrews Theorem.
Also number of partitions in which no odd part is repeated, with no part of size less than or equal to 2 and where differences between adjacent parts are greater than 1 when the larger part is odd and greater than 2 when the larger part is even.
Euler transform of period 8 sequence [ 0, 0, 1, 1, 1, 0, 0, 0, ...]. - Michael Somos, Jun 28 2004

Examples

			1 + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 4*x^12 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 114.

Crossrefs

Programs

  • Maple
    M:=100; qf:=(a,q)->mul(1-a*q^j,j=0..M); tS:=1/(qf(q^3,q^8)*qf(q^4,q^8)*qf(q^5,q^8)); series(%,q,M); seriestolist(%);
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1/ (QPochhammer[ q^3, q^8] QPochhammer[ q^4, q^8] QPochhammer[ q^5, q^8]), {q, 0, n}] (* Michael Somos, Jun 22 2012 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[q^(k^2 + 2 k) QPochhammer[ -q, q^2, k] / QPochhammer[ q^2, q^2, k], {k, 0, Sqrt[n + 1] - 1}], {q, 0, n}]] (* Michael Somos, Jun 22 2012 *)
    nmax=60; CoefficientList[Series[Product[1/((1-x^(8*k-3))*(1-x^(8*k-4))*(1-x^(8*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - ([ 0, 0, 1, 1, 1, 0, 0, 0][(k-1)%8 + 1]) * x^k, 1 + x * O(x^n)), n))} /* Michael Somos, Jun 28 2004 */

Formula

Let qf(a, q) = Product(1-a*q^j, j=0..infinity); g.f. is 1/(qf(q^3, q^8)*qf(q^4, q^8)*qf(q^5, q^8)).
a(n) ~ sqrt(2-sqrt(2)) * exp(sqrt(n)*Pi/2) / (8*n^(3/4)). - Vaclav Kotesovec, Oct 04 2015

Extensions

a(64) corrected by Vaclav Kotesovec, Oct 04 2015