cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A316384 Number of ways to stack n triangles symmetrically in a valley (pointing upwards or downwards depending on row parity).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 2, 5, 2, 5, 2, 6, 3, 8, 4, 9, 4, 10, 4, 12, 6, 15, 7, 17, 7, 19, 8, 22, 10, 26, 12, 30, 13, 33, 14, 38, 17, 45, 21, 51, 22, 56, 24, 64, 29, 74, 33, 83, 36, 92, 40, 104, 46, 119, 53, 133, 58, 147, 63, 165, 73, 187, 83, 208, 90
Offset: 0

Views

Author

Seiichi Manyama, Jun 30 2018

Keywords

Comments

*
/ \
*-*-*-*-*
\ / \ /
*---*
\ /
*
Such a way to stack is not allowed.
From George Beck, Jul 28 2023: (Start)
Equivalently, a(n) is the number of partitions of n such that the 2-modular Ferrers diagram is symmetric.
The first example for n = 16 below corresponds to the partition 9 + 2 + 2 + 2 + 1 with 2-modular Ferrers diagram:
2 2 2 2 1
2
2
2
1
(End)

Examples

			a(16) = 4.
                                 *   *
                                / \ / \
     *---*---*---*---*         *---*---*
      \ / \ / \ / \ /         / \ / \ / \
       *---*---*---*         *---*---*---*
        \ / \ / \ /           \ / \ / \ /
         *---*---*             *---*---*
          \ / \ /               \ / \ /
           *---*                 *---*
            \ /                   \ /
             *                     *
   *---*           *---*     *           *
    \ / \         / \ /     / \         / \
     *---*       *---*     *---*   *   *---*
      \ / \     / \ /       \ / \ / \ / \ /
       *---*   *---*         *---*---*---*
        \ / \ / \ /           \ / \ / \ /
         *---*---*             *---*---*
          \ / \ /               \ / \ /
           *---*                 *---*
            \ /                   \ /
             *                     *
a(17) = 2.
           *---*         *---*           *---*
          / \ / \         \ / \         / \ /
         *---*---*         *---*       *---*
        / \ / \ / \         \ / \     / \ /
       *---*---*---*         *---*---*---*
        \ / \ / \ /           \ / \ / \ /
         *---*---*             *---*---*
          \ / \ /               \ / \ /
           *---*                 *---*
            \ /                   \ /
             *                     *
		

Crossrefs

Cf. A000700 (number of symmetric Ferrers graphs with n nodes), A006950 (number of ways to stack n triangles in a valley), A029838, A036015, A036016, A082303.

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[(QPochhammer[x^6, x^16]*QPochhammer[x^10, x^16] + x*QPochhammer[x^2, x^16]*QPochhammer[x^14, x^16])/(QPochhammer[x^2, x^4] * QPochhammer[x^8, x^16]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 08 2023 *)
  • Ruby
    def s(k, n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0 && i % k == 0}
      s
    end
    def A(ary, n)
      a_ary = [1]
      a = [0] + (1..n).map{|i| ary.inject(0){|s, j| s + j[1] * s(j[0], i)}}
      (1..n).each{|i| a_ary << (1..i).inject(0){|s, j| s - a[j] * a_ary[-j]} / i}
      a_ary
    end
    def A316384(n)
      A([[1, 1], [4, -1]], n).map{|i| i.abs}
    end
    p A316384(100)

Formula

a(2n+1) = A036015(n).
a(2n ) = A036016(n).
a(n) = |A029838(n)| = |A082303(n)|.
Euler transform of period 16 sequence [1, 0, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 0, 1, 0, ...].
a(n) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 08 2023
G.f.: Product_{k>=1} 1/((1 - x^(16*k-2))*(1 - x^(16*k-8))*(1 - x^(16*k-14))) + x*Product_{k>=1} 1/((1 - x^(16*k-6))*(1 - x^(16*k-8))*(1 - x^(16*k-10))). - Vaclav Kotesovec, Feb 08 2023

A036016 Number of partitions of n into parts not of form 4k+2, 8k, 8k+3 or 8k-3.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 5, 6, 8, 9, 10, 12, 15, 17, 19, 22, 26, 30, 33, 38, 45, 51, 56, 64, 74, 83, 92, 104, 119, 133, 147, 165, 187, 208, 229, 256, 288, 319, 351, 390, 435, 481, 528, 584, 649, 715, 783, 863, 954, 1047, 1145, 1258, 1385, 1517, 1655, 1812, 1989
Offset: 0

Views

Author

Keywords

Comments

Case k=2,i=2 of Gordon/Goellnitz/Andrews Theorem.
Also number of partitions in which no odd part is repeated, with at most one part of size less than or equal to 2 and where differences between adjacent parts are greater than 1 when the larger part is odd and greater than 2 when the larger part is even.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + 5*x^10 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 114.

Crossrefs

Programs

  • Maple
    M:=100; qf:=(a,q)->mul(1-a*q^j,j=0..M); tS:=1/(qf(q,q^8)*qf(q^4,q^8)*qf(q^7,q^8)); series(%,q,M); seriestolist(%);
  • Mathematica
    nmax=60; CoefficientList[Series[Product[1/((1-x^(8*k-1))*(1-x^(8*k-4))*(1-x^(8*k-7))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - ([1, 0, 0, 1, 0, 0, 1, 0][(k-1)%8 + 1]) * x^k, 1 + x * O(x^n)), n))} /* Michael Somos, Jun 28 2004 */

Formula

Expansion of f(-x^3, -x^5) / psi(-x) = psi(x^4) / f(-x, -x^7) in powers of x where phi(), f(,) are Ramanujan theta functions.
Euler transform of period 8 sequence [ 1, 0, 0, 1, 0, 0, 1, 0, ...]. - Michael Somos, Jun 28 2004
Let qf(a, q) = Product(1-a*q^j, j=0..infinity); g.f. is 1/(qf(q, q^8)*qf(q^4, q^8)*qf(q^7, q^8)).
G.f.: Sum_{k>=0} x^(k^2) Product_{i=1..k} (1 + x^(2*i - 1)) / (1 - x^(2*i)). - Michael Somos, Jul 24 2012
a(n) ~ sqrt(2+sqrt(2)) * exp(sqrt(n)*Pi/2) / (8*n^(3/4)). - Vaclav Kotesovec, Oct 04 2015

A259774 Expansion of f(x, x^7) / f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 0, 0, -1, 1, -1, 1, -1, 2, -2, 2, -3, 4, -4, 4, -6, 7, -7, 8, -10, 12, -13, 14, -17, 21, -22, 24, -29, 33, -36, 40, -46, 53, -58, 63, -73, 83, -90, 99, -113, 127, -138, 152, -171, 191, -209, 228, -255, 285, -309, 338, -377, 416, -453, 495, -547, 603, -656
Offset: 0

Views

Author

Michael Somos, Nov 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^8 - 2*x^9 + 2*x^10 - 3*x^11 + ...
G.f. = q^7 - q^55 + q^71 - q^87 + q^103 - q^119 + 2*q^135 - 2*q^151 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 15th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^4, x^4] / (QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8]), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ 1 / Product[ (1 + x^(8 k + 3)) (1 - x^(8 k + 4)) (1 + x^(8 k + 5)), {k, 0, Ceiling[ n/8]}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0}[[Mod[k, 16, 1]]], {k, n}], {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0][k%16 + 1]), n))};

Formula

Expansion of f(x^4, x^12) / f(x^3, x^5) where f(, ) is Ramanujan's general theta function.
Euler transform of period 16 sequence [ 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, ...].
G.f.: (1 + x^4 + x^12 + x^24 + x^40 + ...) / (1 + x^3 + x^5 + x^14 + x^18 + ...). [Ramanujan]
G.f.: 1 - x^3 * (1 - x) / (1 - x^2) + x^8 * (1 - x) * (1 - x^3) / ((1 - x^2) * (1 - x^4)) - ... [Ramanujan]
a(n) = (-1)^n * A036015(n) = A029838(2*n + 1) = - A082303(2*n + 1).
Convolution product of A106507 and A214263.
Showing 1-3 of 3 results.