A036059 The summarize Fibonacci sequence: summarize the previous two terms!.
1, 1, 21, 1221, 3231, 233231, 533221, 15534221, 3514334231, 3534533241, 3544832231, 183544733221, 28172544634231, 2827162554535241, 2827265554337241, 2837267544338231, 3847264544637221, 3847362564636221, 2837662564536221, 2827863534537221, 3837564524538221
Offset: 0
Examples
a(20) = 3837564524538221; a(21) = 4837265534637221; a(22+16*k) = 3837365544636221, k >= 0; a(36) = a(20+16) = 3837265554834221 <> a(20); a(37) = a(21+16) = 3837266544735221 <> a(21); a(38) = a(22+16) = 3837365544636221 = a(22). - _Reinhard Zumkeller_, Aug 10 2014
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..181, 10 periods.
- Index to sequences related to say what you see
Programs
-
Haskell
import Data.List (sort, group) a036059 n = a036059_list !! n a036059_list = map (read . concatMap show) fss :: [Integer] where fss = [1] : [1] : zipWith h (tail fss) fss where h vs ws = concatMap (\us -> [length us, head us]) $ group $ reverse $ sort $ vs ++ ws -- Reinhard Zumkeller, Aug 10 2014
-
Maple
a:= proc(n) option remember; `if`(n<2, 1, (p-> parse(cat(seq((c-> `if`(c=0, [][], [c, 9-i][]))(coeff(p, x, 9-i)), i=0..9))))( add(x^i, i=map(x-> convert(x, base, 10)[], [a(n-1),a(n-2)])))) end: seq(a(n), n=0..20); # Alois P. Heinz, Jun 18 2022
-
Mathematica
a[0] = a[1] = 1; a[n_] := a[n] = FromDigits @ Flatten @ Reverse @ Select[ Transpose @ { DigitCount[a[n-1]] + DigitCount[a[n-2]], Append[ Range[9], 0]}, #[[1]] > 0&]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 30 2017 *)
-
Python
def aupton(nn): alst = [1, 1] for n in range(2, nn+1): prev2, anstr = sorted(str(alst[-2]) + str(alst[-1])), "" for d in sorted(set(prev2), reverse=True): anstr += str(prev2.count(d)) + d alst.append(int(anstr)) return alst print(aupton(20)) # Michael S. Branicky, Feb 02 2021
Comments