cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036256 a(n) = Sum_{i=0..n} binomial(i,floor(i/2)).

Original entry on oeis.org

1, 2, 4, 7, 13, 23, 43, 78, 148, 274, 526, 988, 1912, 3628, 7060, 13495, 26365, 50675, 99295, 191673, 376429, 729145, 1434577, 2786655, 5490811, 10691111, 21091711, 41150011, 81266611, 158825371, 313942891, 614483086, 1215563476
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A145972. - Gary W. Adamson, Oct 25 2008
a(n-1) is the graph bandwidth of the n-hypercube graph Q_n. - Eric W. Weisstein, Jul 12 2011

Crossrefs

Partial sums of A001405.
Cf. A145972. - Gary W. Adamson, Oct 25 2008

Programs

  • Mathematica
    Table[Sum[Binomial[k, Floor[k/2]], {k, 0, n}], {n, 0, 20}]
    Table[Piecewise[{{(1/2)*(-1 - I*Sqrt[3] - (3*Gamma[3 + n]*Hypergeometric2F1Regularized[1, (3 + n)/2, (4 + n)/2, 4])/Gamma[2 + n/2]), Mod[n, 2] == 0}, {((-1 - I*Sqrt[3])*Gamma[(1 + n)/2] - 4*n!*(Hypergeometric2F1Regularized[1, (2 + n)/2, (3 + n)/2, 4] + (2 + n)*Hypergeometric2F1Regularized[1, (4 + n)/2, (5 + n)/2, 4]))/(2*Gamma[(1 + n)/2]), Mod[n, 2] == 1}}], {n, 0, 20}] // Expand
  • PARI
    for(n=0,50, print1(sum(k=0,n, binomial(k,floor(k/2))), ", ")) \\ G. C. Greubel, Jan 24 2017

Formula

G.f.: 2/((1-z)*(1-2*z+sqrt(1-4*z^2))). - Emeric Deutsch, Nov 25 2003
a(n) ~ 2^(n+3/2) / sqrt(Pi*n) * (1 + (-1)^n/(12*n)). - Vaclav Kotesovec, Mar 02 2014