cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036299 Binary Fibonacci (or rabbit) sequence.

Original entry on oeis.org

1, 10, 101, 10110, 10110101, 1011010110110, 101101011011010110101, 1011010110110101101011011010110110, 1011010110110101101011011010110110101101011011010110101
Offset: 0

Views

Author

Keywords

Comments

A055642(a(n)) = A000045(n+2). - Reinhard Zumkeller, Jul 06 2014

References

  • N. G. De Bruijn, (1989, January). Updown generation of Beatty sequences. Koninklijke Nederlandsche Akademie van Wetenschappen (Indationes Math.), Proc., Ser. A, 92:4 (1968), 385-407. See Fig. 3.
  • J. Kappraff, D. Blackmore and G. Adamson, Phyllotaxis as a dynamical system: a study in number, Chap. 17 of Jean and Barabe, eds., Symmetry in Plants, World Scientific, Studies in Math. Biology and Medicine, Vol. 4.

Crossrefs

Column k=10 of A144287.

Programs

  • Haskell
    a036299 n = a036299_list !! n
    a036299_list = map read rabbits :: [Integer] where
       rabbits = "1" : "10" : zipWith (++) (tail rabbits) rabbits
    -- Reinhard Zumkeller, Jul 06 2014
    
  • Mathematica
    nxt[{a_,b_}]:=FromDigits[Join[IntegerDigits[b],IntegerDigits[a]]]; Transpose[NestList[{Last[#],nxt[#]}&,{1,10},10]][[1]] (* Harvey P. Dale, Oct 16 2011 *)
  • Python
    def aupton(terms):
      alst = [1, 10]
      while len(alst) < terms: alst.append(int(str(alst[-1]) + str(alst[-2])))
      return alst[:terms]
    print(aupton(9)) # Michael S. Branicky, Jan 10 2021

Formula

a(n+1) = concatenation of a(n) and a(n-1).