A036347 Numbers k for which the parity of k and the parity of sopfr(k) differ, where sopfr is the sum of prime factors with repetition.
1, 6, 9, 10, 12, 14, 15, 20, 21, 22, 24, 25, 26, 28, 33, 34, 35, 38, 39, 40, 44, 46, 48, 49, 51, 52, 54, 55, 56, 57, 58, 62, 65, 68, 69, 74, 76, 77, 80, 81, 82, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 104, 106, 108, 111, 112, 115, 116, 118, 119, 121, 122, 123, 124, 126, 129, 133, 134, 135, 136
Offset: 1
Examples
111 = 3 * 37 -> sum = 40 so 111 is odd while 40 is even.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
isA036347(n) = A359768(n); \\ Antti Karttunen, Jan 15 2023
-
Python
from itertools import count, islice from functools import reduce from operator import ixor from sympy import factorint def A036347_gen(startvalue=1): # generator of terms return filter(lambda n:(reduce(ixor,(p*e for p, e in factorint(n).items()),0)^n)&1, count(max(startvalue,1))) A036347_list = list(islice(A036347_gen(),20)) # Chai Wah Wu, Jan 15 2023
Formula
{k | k+A001414(k) == 1 mod 2}. - Antti Karttunen, Jan 16 2023
Extensions
Missing initial term a(1) = 1 prepended, offset corrected, name edited and more terms added by Antti Karttunen, Jan 15 2023
Comments