cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036361 Number of labeled 2-trees with n nodes.

Original entry on oeis.org

0, 1, 1, 6, 70, 1215, 27951, 799708, 27337500, 1086190605, 49162945645, 2496308717826, 140489907594114, 8678436279296875, 583701359488329915, 42457773984656284920, 3320786296452525792376, 277898747312921495246937, 24775177557380767822265625
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30.

Crossrefs

Column 3 of A135021.
Cf. A000272 (labeled trees), this sequence (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A000055 (unlabeled trees), A054581 (unlabeled 2-trees).

Programs

  • Maple
    A036361:=n->binomial(n, 2)*(2*n-3)^(n-4): seq(A036361(n), n=1..30);
  • Mathematica
    Table[Binomial[n,2](2n-3)^(n-4),{n,20}] (* Harvey P. Dale, Nov 24 2011 *)
  • Python
    def A036361(n): return int(n*(n - 1)*(2*n - 3)**(n - 4)//2) # Chai Wah Wu, Feb 03 2022

Formula

Number of labeled k-trees on n nodes is binomial(n, k) * (k(n-k)+1)^(n-k-2).