A036376 Number of ternary rooted trees with n nodes and height at most 8.
1, 1, 1, 2, 4, 8, 17, 39, 89, 210, 498, 1185, 2813, 6664, 15707, 36886, 86259, 201003, 466788, 1080825, 2495565, 5747664, 13206253, 30276788, 69267205, 158155198, 360422113, 819873747, 1861732042, 4220347570, 9551287776
Offset: 0
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..3280
- E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
- Index entries for sequences related to rooted trees
Crossrefs
Cf. A036370.
Programs
-
Mathematica
T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036376 = T[8][[1 ;; 40]] (* Jean-François Alcover, Jan 19 2016, after Alois P. Heinz (A036370) *)
Formula
If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.