A036433 Number of divisors is a digit in the base 10 representation of n.
1, 2, 14, 23, 29, 34, 46, 63, 68, 74, 76, 78, 88, 94, 116, 127, 128, 134, 138, 141, 142, 143, 145, 146, 164, 182, 184, 186, 189, 194, 196, 211, 214, 223, 227, 229, 233, 236, 238, 239, 241, 247, 248, 249, 251, 254, 257, 258, 261, 263, 268, 269, 271, 274, 277
Offset: 1
Examples
14 has 4 divisors and 4 is a digit in the base 10 representation of 14.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- S. Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2, 1999, #2.
- S. Colton, HR - Automatic Theory Formation in Pure Mathematics
Programs
-
Haskell
a036433 n = a036433_list !! (n-1) a036433_list = filter f [1..] where f x = d < 10 && ("0123456789" !! d) `elem` show x where d = a000005 x -- Reinhard Zumkeller, Mar 15 2012
-
Mathematica
Select[Range[300],MemberQ[IntegerDigits[#],DivisorSigma[0,#]]&] (* Harvey P. Dale, Sep 02 2013 *)
-
Python
from sympy import divisor_count A036433_list = [] for i in range(1,10**5): d = divisor_count(i) if d < 10 and str(d) in str(i): A036433_list.append(i) # Chai Wah Wu, Jan 07 2015
Comments