cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036437 Triangle of coefficients of generating function of ternary rooted trees of height exactly n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 3, 8, 15, 27, 43, 67, 97, 136, 183, 239, 300, 369, 432, 498, 551, 594, 614, 624, 601, 570, 514, 453, 378, 312, 238, 181, 128, 89, 56, 37, 20, 12, 6, 3, 1, 1, 1, 4, 13, 32, 74, 155, 316, 612, 1160, 2126, 3829, 6737
Offset: 1

Views

Author

N. J. A. Sloane, Eric Rains (rains(AT)caltech.edu)

Keywords

Examples

			1;
1, 1, 1;
1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1;
		

Programs

  • Maple
    df:= (t, l)-> zip((x,y)->x-y, t, l, 0):
    T:= proc(n) option remember; local f, g;
          if n=0 then 1
        else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)]));
             g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3));
             seq(coeff(g, z, i), i=0..degree(g, z))
          fi
        end:
    seq(df([T(n)], [T(n-1)])[n+1..-1][], n=1..5); # Alois P. Heinz, Sep 26 2011
  • Mathematica
    df[t_, l_] := Plus @@ PadRight[{t, -l}]; T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] := Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table [Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[df[T[n], T[n-1]][[n+1 ;; -1]], {n, 1, 5}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)

Formula

T_{n}(z) - T_{n-1}(z) (see A036370).