A036437 Triangle of coefficients of generating function of ternary rooted trees of height exactly n.
1, 1, 1, 1, 1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1, 1, 3, 8, 15, 27, 43, 67, 97, 136, 183, 239, 300, 369, 432, 498, 551, 594, 614, 624, 601, 570, 514, 453, 378, 312, 238, 181, 128, 89, 56, 37, 20, 12, 6, 3, 1, 1, 1, 4, 13, 32, 74, 155, 316, 612, 1160, 2126, 3829, 6737
Offset: 1
Examples
1; 1, 1, 1; 1, 2, 4, 4, 5, 4, 4, 3, 2, 1, 1;
Links
- Alois P. Heinz, Rows n = 1..8, flattened
- A. T. Balaban, J. W. Kennedy and L. V. Quintas, The number of alkanes having n carbons and a longest chain of length d, J. Chem. Education, 65 (1988), 304-313.
- Index entries for sequences related to rooted trees
Programs
-
Maple
df:= (t, l)-> zip((x,y)->x-y, t, l, 0): T:= proc(n) option remember; local f, g; if n=0 then 1 else f:= z-> add([T(n-1)][i]*z^(i-1), i=1..nops([T(n-1)])); g:= expand(1 +z*(f(z)^3/6 +f(z^2)*f(z)/2 +f(z^3)/3)); seq(coeff(g, z, i), i=0..degree(g, z)) fi end: seq(df([T(n)], [T(n-1)])[n+1..-1][], n=1..5); # Alois P. Heinz, Sep 26 2011
-
Mathematica
df[t_, l_] := Plus @@ PadRight[{t, -l}]; T[n_] := T[n] = Module[{f, g}, If[n == 0, {1}, f[z_] := Sum[T[n-1][[i]]*z^(i-1), {i, 1, Length[T[n-1]]}]; g = Expand[1+z*(f[z]^3/6+f[z^2]*f[z]/2+f[z^3]/3)]; Table [Coefficient [g, z, i], {i, 0, Exponent[g, z]}]]]; Table[df[T[n], T[n-1]][[n+1 ;; -1]], {n, 1, 5}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
Formula
T_{n}(z) - T_{n-1}(z) (see A036370).