A036454 Prime powers with special exponents: q^(p-1) where p > 2 and q are prime numbers.
4, 9, 16, 25, 49, 64, 81, 121, 169, 289, 361, 529, 625, 729, 841, 961, 1024, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4096, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 15625, 16129, 17161, 18769, 19321
Offset: 1
Examples
From powers of 2: 4,16,64,1024,4096,65536 are in the sequence since exponent+1 is also prime. The same powers of any prime base are also included.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
a009087 n = a009087_list !! (n-1) a009087_list = filter ((== 1) . a010051 . (+ 1) . a100995) a000961_list -- Reinhard Zumkeller, Jun 05 2013
-
Magma
[n: n in [1..20000] | not IsPrime(n) and IsPrime(DivisorSigma(0, n))]; // Vincenzo Librandi, May 19 2015
-
Maple
N:= 10^5: P1:= select(isprime,[2,seq(2*i+1,i=1..floor((sqrt(N)-1)/2))]): P2:= select(`<=`,P1,1+ilog2(N))[2..-1]: S:= {seq(seq(p^(q-1), q = select(`<=`,P2,1+floor(log[p](N)))),p=P1)}: sort(convert(S,list)); # Robert Israel, May 18 2015
-
Mathematica
specialPrimePowerQ[n_] := With[{f = FactorInteger[n]}, Length[f] == 1 && PrimeQ[f[[1, 1]]] && f[[1, 2]] > 1 && PrimeQ[f[[1, 2]] + 1]]; Select[Range[20000], specialPrimePowerQ] (* Jean-François Alcover, Jul 02 2013 *) Select[Range[20000], ! PrimeQ[#] && PrimeQ[DivisorSigma[0, #]] &] (* Carlos Eduardo Olivieri, May 18 2015 *)
-
PARI
for(n=1,34000, if(isprime(n), n++,x=numdiv(n); if(isprime(x),print(n))))
-
PARI
list(lim)=my(v=List(),t);lim=lim\1+.5;forprime(p=3,log(lim)\log(2) +1, t=p-1; forprime(q=2,lim^(1/t),listput(v,q^t))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Apr 26 2012
-
Python
from sympy import primepi, integer_nthroot, primerange def A036454(n): def f(x): return int(n+x-sum(primepi(integer_nthroot(x, p-1)[0]) for p in primerange(3,x.bit_length()+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024
Formula
d(d(a(n))) = 2, where d(x) = tau(x) = sigma_0(x) is the number of divisors of x.
a(n) = (n log n)^2 + 2n^2 log n log log n + O(n^2 log n). - Charles R Greathouse IV, Apr 26 2012
(1 - A010051(a(n))) * A010055(a(n)) * A010051(A100995(a(n))+1) = 1. - Reinhard Zumkeller, Jun 05 2013
A036459(a(n)) = 2. - Ivan Neretin, Jan 25 2016
a(n) = A283262(n)^2. - Amiram Eldar, Jul 04 2022
Sum_{n>=1} 1/a(n) = Sum_{k>=2} P(prime(k)-1) = 0.54756961912815344341..., where P is the prime zeta function. - Amiram Eldar, Jul 10 2022
Comments