A036455 Numbers n such that d(d(n)) is an odd prime, where d(k) is the number of divisors of k.
6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 168, 177, 178, 183
Offset: 1
Keywords
Examples
a(15) = 39 and d(39) = 4, d(d(39)) = d(4) = 3 and d(d(d(39))) = 2. After 3 iteration the equilibrium is reached.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local r; r:= numtheory:-tau(numtheory:-tau(n)); r::odd and isprime(r) end proc: select(filter, [$1..1000]); # Robert Israel, Feb 02 2016
-
Mathematica
fQ[n_] := Module[{d2 = DivisorSigma[0, DivisorSigma[0, n]]}, d2 > 2 && PrimeQ[d2]]; Select[Range[200], fQ] (* T. D. Noe, Jan 22 2013 *)
-
PARI
is(n)=isprime(n=numdiv(numdiv(n))) && n>2 \\ Charles R Greathouse IV, Jan 22 2013
Formula
d(d(d(a(n)))) = 2 for all n.
A036459(a(n)) = 3. - Ivan Neretin, Jan 25 2016
Extensions
Definition clarified by R. J. Mathar and Charles R Greathouse IV, Jan 22 2013
Comments