cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A036476 a(n) = partition(11n+2) mod 11.

Original entry on oeis.org

2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 4, 4, 6, 6, 4, 6, 6, 6, 6, 8, 8, 8, 8, 10, 8, 10, 10, 1, 1, 1, 1, 3, 3, 5, 3, 5, 5, 7, 7, 9, 9, 0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 1, 1, 3, 3, 7, 7, 9, 9, 2, 2, 6, 6, 10, 10, 3, 3, 7, 9, 0, 2, 6, 8, 1, 1, 7, 9, 2, 2, 8, 10, 5, 7, 2, 2, 8, 10, 7, 9, 4, 6, 3
Offset: 0

Views

Author

Keywords

Crossrefs

partition(11n+k): A036485 (k=0), A036475 (k=1), this sequence (k=2), A036477 (k=3), A036478 (k=4), A036479 (k=5), A000004 (k=6), A036480 (k=7), A036481 (k=8), A036482 (k=9), A036483 (k=10).

Programs

  • Mathematica
    Table[Mod[PartitionsP[11n+2],11],{n,0,110}] (* Harvey P. Dale, Jul 29 2017 *)
  • PARI
    a(n) = numbpart(11*n + 2) % 11; \\ Amiram Eldar, Aug 01 2025

Formula

a(n) = A020919(11*n + 2). - Amiram Eldar, Aug 01 2025

Extensions

Offset corrected by Amiram Eldar, Aug 01 2025

A036477 a(n) = partition(11n+3) mod 11.

Original entry on oeis.org

3, 3, 0, 3, 3, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6, 3, 6, 6, 6, 6, 6, 6, 9, 9, 6, 9, 9, 9, 1, 1, 1, 1, 1, 1, 4, 4, 4, 7, 7, 7, 7, 10, 10, 10, 2, 10, 5, 5, 5, 8, 8, 8, 0, 0, 3, 6, 6, 6, 1, 1, 1, 4, 7, 7, 10, 2, 2, 5, 8, 0, 3, 6, 6, 1, 4, 4, 10, 2, 5, 8, 0, 3, 9, 1, 4, 10, 5, 5, 3, 6, 9, 4, 10, 2, 0, 3, 9, 7
Offset: 0

Views

Author

Keywords

Crossrefs

partition(11n+k): A036485 (k=0), A036475 (k=1), A036476 (k=2), this sequence (k=3), A036478 (k=4), A036479 (k=5), A000004 (k=6), A036480 (k=7), A036481 (k=8), A036482 (k=9), A036483 (k=10).

Programs

  • Mathematica
    a[n_] := Mod[PartitionsP[11*n + 3], 11]; Array[a, 100, 0] (* Amiram Eldar, Aug 01 2025 *)
  • PARI
    a(n) = numbpart(11*n + 3) % 11; \\ Amiram Eldar, Aug 01 2025

Formula

a(n) = A020919(11*n + 3). - Amiram Eldar, Aug 01 2025

Extensions

Offset corrected by Amiram Eldar, Aug 01 2025

A036478 a(n) = partition(11n+4) mod 11.

Original entry on oeis.org

5, 0, 5, 0, 5, 0, 5, 0, 5, 5, 5, 0, 5, 5, 5, 5, 5, 5, 10, 5, 10, 5, 10, 5, 10, 5, 4, 10, 4, 10, 4, 10, 4, 4, 4, 4, 9, 4, 9, 9, 3, 9, 3, 9, 8, 3, 8, 3, 2, 8, 2, 8, 7, 2, 1, 7, 1, 1, 6, 1, 0, 6, 5, 0, 10, 5, 4, 10, 9, 4, 3, 9, 2, 3, 7, 2, 1, 7, 0, 6, 10, 5, 4, 10, 3, 9, 2, 8, 1, 7, 5, 6, 4, 10, 3, 9, 7, 2
Offset: 0

Views

Author

Keywords

Crossrefs

partition(11n+k): A036485 (k=0), A036475 (k=1), A036476 (k=2), A036477 (k=3), this sequence (k=4), A036479 (k=5), A000004 (k=6), A036480 (k=7), A036481 (k=8), A036482 (k=9), A036483 (k=10).

Programs

  • Mathematica
    a[n_] := Mod[PartitionsP[11*n + 4], 11]; Array[a, 100, 0] (* Amiram Eldar, Aug 01 2025 *)
  • PARI
    a(n) = numbpart(11*n + 4) % 11; \\ Amiram Eldar, Aug 01 2025

Formula

a(n) = A020919(11*n + 4). - Amiram Eldar, Aug 01 2025

Extensions

Offset corrected by Amiram Eldar, Aug 01 2025

A036479 a(n) = partition(11n+5) mod 11.

Original entry on oeis.org

7, 0, 7, 0, 0, 7, 7, 0, 7, 0, 7, 7, 7, 0, 7, 7, 7, 7, 3, 7, 3, 7, 7, 7, 3, 3, 3, 3, 3, 3, 10, 3, 10, 3, 10, 10, 6, 10, 6, 10, 6, 6, 2, 6, 2, 2, 2, 2, 9, 2, 5, 9, 5, 5, 1, 5, 8, 1, 8, 8, 4, 8, 0, 4, 0, 7, 3, 7, 10, 3, 6, 10, 2, 6, 9, 9, 5, 5, 8, 1, 0, 4, 7, 7, 10, 3, 2, 6, 9, 9, 8, 1, 0, 4, 7, 3, 2, 6, 5, 5
Offset: 0

Views

Author

Keywords

Crossrefs

partition(11n+k): A036485 (k=0), A036475 (k=1), A036476 (k=2), A036477 (k=3), A036478 (k=4), this sequence (k=5), A000004 (k=6), A036480 (k=7), A036481 (k=8), A036482 (k=9), A036483 (k=10).

Programs

  • Mathematica
    a[n_] := Mod[PartitionsP[11*n + 5], 11]; Array[a, 100, 0] (* Amiram Eldar, Aug 01 2025 *)
  • PARI
    a(n) = numbpart(11*n + 5) % 11; \\ Amiram Eldar, Aug 01 2025

Formula

a(n) = A020919(11*n + 5). - Amiram Eldar, Aug 01 2025

Extensions

Offset corrected by Amiram Eldar, Aug 01 2025

A036480 a(n) = partition(11n+7) mod 11.

Original entry on oeis.org

4, 0, 0, 4, 0, 0, 4, 0, 4, 4, 0, 0, 4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 8, 8, 4, 8, 8, 8, 1, 8, 8, 1, 8, 1, 1, 1, 1, 5, 1, 5, 5, 5, 5, 9, 5, 9, 9, 9, 9, 2, 2, 6, 6, 6, 6, 10, 6, 10, 3, 3, 3, 7, 3, 7, 0, 0, 0, 8, 4, 8, 1, 1, 1, 9, 5, 2, 2, 2, 6, 3, 10, 3, 7, 0, 0, 8, 8, 1, 5, 9, 9, 10, 6, 3, 7, 0, 0, 1
Offset: 0

Views

Author

Keywords

Crossrefs

partition(11n+k): A036485 (k=0), A036475 (k=1), A036476 (k=2), A036477 (k=3), A036478 (k=4), A036479 (k=5), A000004 (k=6), this sequence (k=7), A036481 (k=8), A036482 (k=9), A036483 (k=10).

Programs

  • Mathematica
    a[n_] := Mod[PartitionsP[11*n + 7], 11]; Array[a, 100, 0] (* Amiram Eldar, Aug 01 2025 *)
  • PARI
    a(n) = numbpart(11*n + 7) % 11; \\ Amiram Eldar, Aug 01 2025

Formula

a(n) = A020919(11*n + 7). - Amiram Eldar, Aug 01 2025

Extensions

Offset corrected by Amiram Eldar, Aug 01 2025

A036481 a(n) = partition(11n+8) mod 11.

Original entry on oeis.org

0, 6, 5, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 6, 0, 6, 6, 6, 0, 6, 6, 6, 0, 6, 0, 6, 6, 6, 6, 1, 6, 6, 6, 1, 6, 1, 6, 1, 6, 1, 6, 7, 6, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 2, 1, 2, 7, 2, 7, 2, 7, 8, 7, 8, 2, 3, 2, 8, 8, 3, 8, 9, 8, 9, 3, 9, 3, 4, 3, 4, 9, 10, 9, 5
Offset: 0

Views

Author

Keywords

Crossrefs

partition(11n+k): A036485 (k=0), A036475 (k=1), A036476 (k=2), A036477 (k=3), A036478 (k=4), A036479 (k=5), A000004 (k=6), A036480 (k=7), this sequence (k=8), A036482 (k=9), A036483 (k=10).

Programs

  • Mathematica
    a[n_] := Mod[PartitionsP[11*n + 8], 11]; Array[a, 100, 0] (* Amiram Eldar, Aug 01 2025 *)
  • PARI
    a(n) = numbpart(11*n + 8) % 11; \\ Amiram Eldar, Aug 01 2025

Formula

a(n) = A020919(11*n + 8). - Amiram Eldar, Aug 01 2025

Extensions

Offset corrected by Amiram Eldar, Aug 01 2025

A036482 a(n) = partition(11n+9) mod 11.

Original entry on oeis.org

8, 0, 0, 0, 8, 0, 0, 8, 8, 0, 0, 0, 8, 0, 8, 8, 8, 0, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 8, 5, 8, 5, 5, 5, 5, 2, 5, 5, 5, 2, 5, 2, 2, 10, 2, 2, 2, 10, 10, 10, 10, 7, 10, 7, 7, 4, 7, 4, 4, 1, 4, 1, 1, 9, 1, 9, 9, 6, 9, 3, 6, 0, 3, 0, 0, 8, 8, 5, 5, 2, 2, 10, 2, 4, 7, 4, 4, 9, 1, 6, 6, 0, 3, 8, 8, 2, 5, 10, 10
Offset: 0

Views

Author

Keywords

Crossrefs

partition(11n+k): A036485 (k=0), A036475 (k=1), A036476 (k=2), A036477 (k=3), A036478 (k=4), A036479 (k=5), A000004 (k=6), A036480 (k=7), A036481 (k=8), this sequence (k=9), A036483 (k=10).

Programs

  • Mathematica
    a[n_] := Mod[PartitionsP[11*n + 9], 11]; Array[a, 100, 0] (* Amiram Eldar, Aug 01 2025 *)
  • PARI
    a(n) = numbpart(11*n + 9) % 11; \\ Amiram Eldar, Aug 01 2025

Formula

a(n) = A020919(11*n + 9). - Amiram Eldar, Aug 01 2025

Extensions

Offset corrected by Amiram Eldar, Aug 01 2025

A036483 a(n) = partition(11n+10) mod 11.

Original entry on oeis.org

9, 0, 0, 0, 0, 9, 9, 0, 0, 0, 9, 0, 9, 0, 0, 9, 9, 9, 9, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 9, 7, 7, 7, 7, 7, 7, 7, 7, 5, 7, 5, 7, 5, 5, 5, 5, 3, 5, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 8, 10, 10, 10, 8, 8, 6, 8, 6, 6, 4, 4, 2, 4, 2, 2, 0, 0, 9, 0, 7, 7, 5, 5, 3, 3, 1, 1, 10, 10, 6, 8, 6, 4, 2, 2, 9, 0, 7, 7, 3, 3
Offset: 0

Views

Author

Keywords

Crossrefs

partition(11n+k): A036485 (k=0), A036475 (k=1), A036476 (k=2), A036477 (k=3), A036478 (k=4), A036479 (k=5), A000004 (k=6), A036480 (k=7), A036481 (k=8), A036482 (k=9), this sequence (k=10).

Programs

  • Mathematica
    a[n_] := Mod[PartitionsP[11*n + 10], 11]; Array[a, 100, 0] (* Amiram Eldar, Aug 01 2025 *)
  • PARI
    a(n) = numbpart(11*n + 10) % 11; \\ Amiram Eldar, Aug 01 2025

Formula

a(n) = A020919(11*n + 10). - Amiram Eldar, Aug 01 2025

Extensions

Offset corrected by Amiram Eldar, Aug 01 2025

A036485 a(n) = partition(11n) mod 11.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 0, 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 7, 9, 9, 10, 0, 1, 2, 3, 4, 5, 6, 8, 8, 10, 0, 1, 2, 4, 5, 7, 8, 10, 0, 2, 3, 6, 7, 9, 0, 2, 4, 7, 8, 0, 2, 5, 6, 10, 1, 4, 6, 10
Offset: 0

Views

Author

Keywords

Crossrefs

partition(11n+k): this sequence (k=0), A036475 (k=1), A036476 (k=2), A036477 (k=3), A036478 (k=4), A036479 (k=5), A000004 (k=6), A036480 (k=7), A036481 (k=8), A036482 (k=9), A036483 (k=10).

Programs

  • Mathematica
    Mod[PartitionsP[11*Range[0,110]],11] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    a(n) = numbpart(11*n) % 11; \\ Amiram Eldar, Aug 01 2025

Formula

a(n) = A020919(11*n). - Amiram Eldar, Aug 01 2025

Extensions

Offset corrected by Amiram Eldar, Aug 01 2025
Showing 1-9 of 9 results.