A036492 Offsets for the Atkin Partition Congruence theorem.
4, 5, 6, 24, 19, 47, 39, 61, 116, 99, 124, 194, 149, 243, 369, 292, 479, 599, 600, 474, 1174, 721, 974, 929, 1524, 2301, 1909, 2899, 2474, 2987, 2294, 3099, 5682, 4849, 4714, 3724, 6074, 7376, 9224, 9504, 7299, 14031, 11974, 14974, 11905, 18079, 14999, 11849, 14306, 23469, 29349, 18024, 24349
Offset: 1
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, pp. 159-161.
- G. H. Hardy, P. V. Seshu Aiyar and B. M. Wilson, Collected Papers of S. Ramanujan, CUP, 1927, #25 (1919), pp. 210-213, and #28 (1919), p. 230.
Links
- A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J., 8 (1967), 14-32.
Programs
-
Mathematica
Map[Function[df, First@Select[Range[3, df], Mod[24 #, df] == 1 &, 1]], Select[Range[40000], DeleteCases[FactorInteger[#], {5|7|11, }] == {} &]] (* From _Olivier Gérard, Nov 12 2016 *)
Formula
24 * a(n) == 1 (mod A036490(n)). - Sean A. Irvine, Nov 04 2020
Extensions
Offset corrected by Reinhard Zumkeller, Feb 19 2013
Comments