A036507
Smallest square containing exactly n decimal digits '0'.
Original entry on oeis.org
0, 100, 102400, 10000, 10240000, 1000000, 1024000000, 100000000, 102400000000, 10000000000, 10240000000000, 1000000000000, 1024000000000000, 100000000000000, 102400000000000000, 10000000000000000, 10240000000000000000, 1000000000000000000, 1024000000000000000000
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 4*10^6, i++, n0 = Count[IntegerDigits[i^2], 0];
If[nsmall[[n0]] > i^2, nsmall[[n0]] = i^2]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
a[n_] := If[OddQ[n], 1024*10^(n-1), 10^n]; a[1] = 0; Array[a, 20] (* Amiram Eldar, Aug 26 2025 *)
A036533
Smallest cube containing exactly n 6's.
Original entry on oeis.org
0, 64, 166375, 46656, 367061696, 1676676672, 66676466375, 2646396666368, 6666963601661, 6946660616126616, 3666676156163166167, 62656677666653866496, 2674826866666660366016, 166465666639716668628669, 3656365366626065666266624, 167947668303666616666566656
Offset: 0
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 6];
If[nsmall[[n0 + 1]] > i^3, nsmall[[n0 + 1]] = i^3]];
Cases[nsmall, ?NumberQ] (* _Robert Price, Mar 21 2020 *)
A048348
a(n)^2 is the smallest square containing exactly n 3's.
Original entry on oeis.org
6, 56, 586, 1156, 11547, 57735, 559769, 1197219, 6582806, 36514844, 350903624, 1798230611, 1825769244, 48304278624, 11547014044, 577333277556, 1527394295306, 6582576498844, 57465931849517, 416333244448889, 581664313273844, 4820096824065156, 18256870415638994, 61913999493598646, 577694870440557344
Offset: 1
-
a[n_] := Block[{k=1}, While[DigitCount[k^2, 10, 3] != n, k++]; k]; Array[a, 6] (* Giovanni Resta, Jul 27 2018 *)
A137434
a(n) = smallest square containing n copies of the same nonzero digit.
Original entry on oeis.org
1, 121, 1444, 44944, 6441444, 47444544, 4434494464, 44424414441, 1113111511681, 22222220262025, 444431244445444, 22292262226224225, 441544444344443449, 1113101111111117041, 2222222222222640225, 11111119101145491111121
Offset: 1
a(9) = 1113111511681 because there is no smaller square number with 9 copies of the same nonzero digit. a(9) has 9 1's.
Showing 1-4 of 4 results.
Comments