A036536
Smallest cube containing exactly n 9's.
Original entry on oeis.org
0, 729, 29791, 970299, 994011992, 997002999, 499999005953, 999700029999, 999940001199992, 999970000299999, 991023990975990999, 999997000002999999, 299243659909999996099, 999999700000029999999, 929999949497863992829999, 999100239990997599909999
Offset: 0
-
nsmall = Table[Infinity, 15];
For[i = 0, i <= 10^6, i++, n0 = Count[IntegerDigits[i^3], 9];
If[nsmall[[n0 + 1]] > i^3, nsmall[[n0 + 1]] = i^3]];
Cases[nsmall, ?NumberQ] (* _Robert Price, Mar 20 2020 *)
A036507
Smallest square containing exactly n decimal digits '0'.
Original entry on oeis.org
0, 100, 102400, 10000, 10240000, 1000000, 1024000000, 100000000, 102400000000, 10000000000, 10240000000000, 1000000000000, 1024000000000000, 100000000000000, 102400000000000000, 10000000000000000, 10240000000000000000, 1000000000000000000, 1024000000000000000000
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 4*10^6, i++, n0 = Count[IntegerDigits[i^2], 0];
If[nsmall[[n0]] > i^2, nsmall[[n0]] = i^2]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
a[n_] := If[OddQ[n], 1024*10^(n-1), 10^n]; a[1] = 0; Array[a, 20] (* Amiram Eldar, Aug 26 2025 *)
A048354
a(n)^2 is the smallest square containing exactly n 9's.
Original entry on oeis.org
3, 63, 173, 1414, 17313, 53937, 138923, 953937, 3082207, 31622764, 99849687, 301579177, 3033150173, 14142134563, 141413973847, 543315746063, 3098361825223, 5477225574409, 14139412282687, 314896807700437, 412286308285783, 3147904051904219, 9055381813816577, 311447546136054827, 282841298257395573
Offset: 1
-
a[n_]:=Module[{i},i=1;While[DigitCount[i^2][[9]]!=n,i++ ];i]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 23 2006 *)
A137434
a(n) = smallest square containing n copies of the same nonzero digit.
Original entry on oeis.org
1, 121, 1444, 44944, 6441444, 47444544, 4434494464, 44424414441, 1113111511681, 22222220262025, 444431244445444, 22292262226224225, 441544444344443449, 1113101111111117041, 2222222222222640225, 11111119101145491111121
Offset: 1
a(9) = 1113111511681 because there is no smaller square number with 9 copies of the same nonzero digit. a(9) has 9 1's.
Showing 1-4 of 4 results.
Comments