cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036517 Smallest triangular number containing exactly n 0's.

Original entry on oeis.org

0, 300, 20100, 300700, 2001000, 50005000, 200010000, 5000050000, 20000100000, 500000500000, 2000001000000, 50000005000000, 200000010000000, 5000000050000000, 20000000100000000, 500000000500000000, 2000000001000000000, 50000000005000000000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nsmall = Table[Infinity, 20];
    For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
      n0 = Count[IntegerDigits[p], 0];
      If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
    ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
    LinearRecurrence[{0,110,0,-1000},{0,300,20100,300700,2001000,50005000,200010000,5000050000},30] (* Harvey P. Dale, Jul 31 2021 *)
  • PARI
    concat(0, Vec(100*x^2*(3 + 201*x + 2677*x^2 - 2100*x^3 + 172280*x^4 - 1998000*x^6) / ((1 - 10*x)*(1 + 10*x)*(1 - 10*x^2)) + O(x^20))) \\ Colin Barker, Mar 25 2020

Formula

a(n) = A000217(A048355(n)).
From Colin Barker, Mar 25 2020: (Start)
G.f.: 100*x^2*(3 + 201*x + 2677*x^2 - 2100*x^3 + 172280*x^4 - 1998000*x^6) / ((1 - 10*x)*(1 + 10*x)*(1 - 10*x^2)).
a(n) = 110*a(n-2) - 1000*a(n-4) for n>6.
(End)