A048355
a(n) is the index of the smallest triangular number containing exactly n 0's.
Original entry on oeis.org
0, 24, 200, 775, 2000, 10000, 20000, 100000, 200000, 1000000, 2000000, 10000000, 20000000, 100000000, 200000000, 1000000000, 2000000000, 10000000000, 20000000000, 100000000000, 200000000000, 1000000000000, 2000000000000, 10000000000000, 20000000000000, 100000000000000
Offset: 1
From _Bernard Schott_, Mar 04 2019: (Start)
a(2) = 24: T(24) = 300 which contains exactly two 0's.
a(6) = 10000: T(10000) = 50005000 which contains exactly six 0's.
a(7) = 20000: T(20000) = 200010000 which contains exactly seven 0's.
(End)
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 0];
If[nsmall[[n0]] > i, nsmall[[n0]] = i]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
LinearRecurrence[{0,10},{0,24,200,775,2000,10000},30] (* Harvey P. Dale, Jul 26 2024 *)
-
Vec(x^2*(24 + 200*x + 535*x^2 + 2250*x^4) / (1 - 10*x^2) + O(x^30)) \\ Colin Barker, Mar 25 2020
A036526
Smallest triangular number containing exactly n 9's.
Original entry on oeis.org
91, 990, 199396, 998991, 399949903, 2919969990, 39999939903, 999999911791, 9999192996990, 499798990999990, 99597939989199996, 999699998689998991, 19699899919999499091, 999532899999499099996, 999999859999976929990, 199793999409939999989991, 138999999499599999199995, 99996999694999999299662991
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 9];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
A036521
Smallest triangular number containing exactly n 4's.
Original entry on oeis.org
45, 4465, 144453, 544446, 427444941, 414446445, 4440447441, 444344944456, 4404424444435, 1046444944404441, 14546344444444945, 441441444448564440, 4445444444946443841, 444438244043444444046, 4444844454444484014645, 44641424644444444411441, 4024414288444444444404441, 44448461444441444448442420
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 4];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
A036525
Smallest triangular number containing exactly n 8's.
Original entry on oeis.org
28, 3828, 48828, 828828, 55888878, 3288888856, 78888885078, 388884828828, 13889888887878, 28888888883865, 8980885988888880, 88838888988888990, 983888888888812878, 8838888986888887878, 894885888888885888855, 78888888822845888188878, 1888886085781088888888878, 18788848888888828885888126
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 8];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
A036518
Smallest triangular number containing exactly n 1's.
Original entry on oeis.org
1, 171, 1711, 105111, 1188111, 18111171, 1111160511, 11161151121, 111111101310, 11311511141161, 121111912011111, 11111811011411671, 11101111131911151, 11111111111113201, 111111312111373411111, 1119711111215111121171, 111112117111126711111195, 1141011111112731111616111
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 1];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
Module[{nn=5*10^6,tr},tr={#,DigitCount[#,10,1]}&/@Accumulate[Range[ nn]]; Table[ SelectFirst[tr,#[[2]]==k&],{k,10}]][[;;,1]] (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Sep 01 2024 *)
A036519
Smallest triangular number containing exactly n 2's.
Original entry on oeis.org
21, 1225, 23220, 212226, 22121226, 2202322528, 21222223210, 202222242820, 22122952222920, 229222922294226, 2221228522222920, 222322222025202925, 222212284222222920, 22222122841222222920, 2092226022222222442221, 22222222042522220020225, 622222207421222222222253, 22222212062122272422225226
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 2];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
A036520
Smallest triangular number containing exactly n 3's.
Original entry on oeis.org
3, 3003, 33153, 3303735, 333336, 333039336, 13333363350, 330335331336, 3033333513330, 303313733373336, 30333330330333465, 313631353332333336, 330332337333331336, 3333043333303433331, 3333333330453337336653, 30733333373333335323321, 330332334339335333331336, 33033333933433336339893330
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 3];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
A036522
Smallest triangular number containing exactly n 5's.
Original entry on oeis.org
15, 55, 5565, 255255, 12552555, 585555531, 5355555765, 50525595555, 5258558551555, 555595555515, 1551745755555555, 39355555555552515, 552550545955255555, 13555559555595513555, 455557505555605555585, 5555558514557555255755, 555457555855555784555355, 505555585555455555505395
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 5];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
A036523
Smallest triangular number containing exactly n 6's.
Original entry on oeis.org
6, 66, 666, 66066, 5666661, 36666766, 646686666, 77666666626, 4666660668676, 66488766666666, 6666063656661696, 6666664664655666, 666416695266666666, 56666136666666763866, 626646696666896766666, 11666966196628666666666, 66666666636866637006666, 2626660686666666671166666
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 6];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
A036524
Smallest triangular number containing exactly n 7's.
Original entry on oeis.org
78, 1770, 72771, 6787770, 37779778, 2476777771, 7477727778, 7077757275771, 27778877747778, 177775772774775, 7777755777787716, 172777077787777785, 7987777777779277726, 177577777275777787371, 377679777777377717778, 77773137747757777775775, 777367777737777774977796, 67775787670776777773777778
Offset: 1
-
nsmall = Table[Infinity, 20];
For[i = 0, i <= 10^6, i++, p = PolygonalNumber[i];
n0 = Count[IntegerDigits[p], 7];
If[nsmall[[n0]] > p, nsmall[[n0]] = p]];
ReplaceAll[nsmall, Infinity -> "?"] (* Robert Price, Mar 22 2020 *)
Showing 1-10 of 10 results.