cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036557 Number of multiples of 3 in 0..2^n-1 with an even sum of base-2 digits.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 463, 926, 1730, 3460, 6555, 13110, 25126, 50252, 97223, 194446, 379050, 758100, 1486675, 2973350, 5858126, 11716252, 23166783, 46333566, 91869970, 183739940, 365088395, 730176790
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,2,3,6,10]; [1] cat [n le 5 select I[n] else 2*Self(n-1) + 4*Self(n-2) - 8*Self(n-3) - 3*Self(n-4) + 6*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 31 2017
  • Mathematica
    Sum[ Sum[ Binomial[ Floor[ n/2 ], i ], {i, r, n, 6} ]*Sum[ Binomial[ Ceiling[ n/2 ], i ], {i, r, n, 6} ], {r, 0, 5} ]
    Join[{1}, LinearRecurrence[{2, 4, -8, -3, 6}, {1, 2, 3, 6, 10}, 50]] (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    x='x+O('x^30); Vec((1-x-4*x^2+3*x^3+3*x^4-x^5)/((1-x^2)*(1-2*x)*(1-3*x^2))) \\ G. C. Greubel, Dec 31 2017
    

Formula

From Ralf Stephan, Aug 29 2004: (Start)
a(n) = (1/12)*(3^((n+1)/2) + 3^((n+2)/2) + 2^(n+1) + (-1)^n + 3), n > 0.
G.f.: (1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5)/((1-x^2)*(1-2*x)*(1-3*x^2)). (End)
a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) - 3*a(n-4) + 6*a(n-5). - Wesley Ivan Hurt, Apr 13 2021