A036573 Size of maximal triangulation of an n-antiprism with regular polygonal base.
4, 8, 12, 17, 22, 28, 34, 41, 48, 56, 64, 73, 82, 92, 102, 113, 124, 136, 148, 161, 174, 188, 202, 217, 232, 248, 264, 281, 298, 316, 334, 353, 372, 392, 412, 433, 454, 476, 498, 521, 544, 568, 592, 617, 642, 668, 694, 721, 748, 776, 804, 833
Offset: 3
Links
- Vincenzo Librandi, Table of n, a(n) for n = 3..1000
- J. A. De Loera, F. Santos and F. Takeuchi, Extremal properties of optimal dissections of convex polytopes, SIAM Journal Discrete Mathematics, 14, 2001, 143-161.
- M. Develin, Maximal triangulations of a regular prism
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Cf. A036572.
Programs
-
Magma
[Floor((n^2+8*n-16)/4): n in [3..60]]; // Vincenzo Librandi, Oct 21 2013
-
Mathematica
CoefficientList[Series[-(x^3 - 4 x^2 + 4)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 21 2013 *) LinearRecurrence[{2,0,-2,1},{4,8,12,17},60] (* Harvey P. Dale, Nov 28 2014 *)
-
PARI
Vec(-x^3*(x^3-4*x^2+4)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 06 2013
Formula
a(n) = floor((n^2 + 8n - 16)/4). - Ralf Stephan, Oct 13 2003
a(n) = (-33+(-1)^n+16*n+2*n^2)/8. a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). G.f.: -x^3*(x^3-4*x^2+4) / ((x-1)^3*(x+1)). - Colin Barker, Sep 06 2013
Extensions
More terms from Ralf Stephan, Oct 13 2003