cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036573 Size of maximal triangulation of an n-antiprism with regular polygonal base.

Original entry on oeis.org

4, 8, 12, 17, 22, 28, 34, 41, 48, 56, 64, 73, 82, 92, 102, 113, 124, 136, 148, 161, 174, 188, 202, 217, 232, 248, 264, 281, 298, 316, 334, 353, 372, 392, 412, 433, 454, 476, 498, 521, 544, 568, 592, 617, 642, 668, 694, 721, 748, 776, 804, 833
Offset: 3

Views

Author

Jesus De Loera (deloera(AT)math.ucdavis.edu)

Keywords

Crossrefs

Cf. A036572.

Programs

  • Magma
    [Floor((n^2+8*n-16)/4): n in [3..60]]; // Vincenzo Librandi, Oct 21 2013
  • Mathematica
    CoefficientList[Series[-(x^3 - 4 x^2 + 4)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 21 2013 *)
    LinearRecurrence[{2,0,-2,1},{4,8,12,17},60] (* Harvey P. Dale, Nov 28 2014 *)
  • PARI
    Vec(-x^3*(x^3-4*x^2+4)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 06 2013
    

Formula

a(n) = floor((n^2 + 8n - 16)/4). - Ralf Stephan, Oct 13 2003
a(n) = (-33+(-1)^n+16*n+2*n^2)/8. a(n) = 2*a(n-1)-2*a(n-3)+a(n-4). G.f.: -x^3*(x^3-4*x^2+4) / ((x-1)^3*(x+1)). - Colin Barker, Sep 06 2013

Extensions

More terms from Ralf Stephan, Oct 13 2003