A036602 Triangle of coefficients of generating function of binary rooted trees of height at most n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 6, 8, 8, 9, 7, 7, 4, 3, 1, 1, 1, 1, 1, 2, 3, 6, 10, 17, 25, 38, 52, 73, 93, 121, 143, 172, 187, 205, 202, 201, 177, 158, 123, 99, 66, 47, 26, 17, 7, 4, 1, 1, 1, 1, 1, 2, 3, 6, 11, 22, 39, 70, 118, 200, 324, 526
Offset: 0
Examples
Triangle begins: 1 1, 1; 1, 1, 1, 1; 1, 1, 1, 2, 2, 2, 1, 1; 1, 1, 1, 2, 3, 5, 6, 8, 8, 9, 7, 7, 4, 3, 1, 1; 1, 1, 1, 2, 3, 6, 10, 17, 25, 38, 52, 73, 93, 121, 143, 172, 187, ... 1, 1, 1, 2, 3, 6, 11, 22, 39, 70, 118, 200, 324, 526, 825, 1290, 1958, ... 1, 1, 1, 2, 3, 6, 11, 23, 45, 90, 171, 325, 598, 1097, 1972, 3531, 6225, ...
Links
- Alois P. Heinz, Rows n = 0..12, flattened
- E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
- Index entries for sequences related to rooted trees
Programs
-
Maple
b:= proc(n, h) option remember; `if`(n<2, n, `if`(h<1, 0, `if`(n::odd, 0, (t-> t*(1-t)/2)(b(n/2, h-1)))+add(b(i, h-1)*b(n-i, h-1), i=1..n/2))) end: A:= (n, k)-> b(k+1, n): seq(seq(A(n, k), k=0..2^n-1), n=0..6); # Alois P. Heinz, Sep 08 2017
-
Mathematica
b[n_, h_] := b[n, h] = If[n < 2, n, If[h < 1, 0, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2, h-1]]] + Sum[b[i, h-1]*b[n-i, h-1], {i, 1, n/2}]]]; A[n_, k_] := b[k+1, n]; Table[Table[A[n, k], {k, 0, 2^n-1}], {n, 0, 6}] // Flatten (* Jean-François Alcover, Feb 14 2021, after Alois P. Heinz *)