cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036602 Triangle of coefficients of generating function of binary rooted trees of height at most n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 6, 8, 8, 9, 7, 7, 4, 3, 1, 1, 1, 1, 1, 2, 3, 6, 10, 17, 25, 38, 52, 73, 93, 121, 143, 172, 187, 205, 202, 201, 177, 158, 123, 99, 66, 47, 26, 17, 7, 4, 1, 1, 1, 1, 1, 2, 3, 6, 11, 22, 39, 70, 118, 200, 324, 526
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
1
1, 1;
1, 1, 1, 1;
1, 1, 1, 2, 2, 2,  1,  1;
1, 1, 1, 2, 3, 5,  6,  8,  8,  9,   7,   7,   4,    3,    1,    1;
1, 1, 1, 2, 3, 6, 10, 17, 25, 38,  52,  73,  93,  121,  143,  172,  187, ...
1, 1, 1, 2, 3, 6, 11, 22, 39, 70, 118, 200, 324,  526,  825, 1290, 1958, ...
1, 1, 1, 2, 3, 6, 11, 23, 45, 90, 171, 325, 598, 1097, 1972, 3531, 6225, ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(n<2, n, `if`(h<1, 0, `if`(n::odd, 0,
         (t-> t*(1-t)/2)(b(n/2, h-1)))+add(b(i, h-1)*b(n-i, h-1), i=1..n/2)))
        end:
    A:= (n, k)-> b(k+1, n):
    seq(seq(A(n, k), k=0..2^n-1), n=0..6);  # Alois P. Heinz, Sep 08 2017
  • Mathematica
    b[n_, h_] := b[n, h] = If[n < 2, n, If[h < 1, 0, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2, h-1]]] + Sum[b[i, h-1]*b[n-i, h-1], {i, 1, n/2}]]];
    A[n_, k_] := b[k+1, n];
    Table[Table[A[n, k], {k, 0, 2^n-1}], {n, 0, 6}] // Flatten (* Jean-François Alcover, Feb 14 2021, after Alois P. Heinz *)