A036650 Number of 5-valent trees with n nodes.
1, 1, 1, 1, 2, 3, 6, 10, 21, 42, 94, 204, 473, 1098, 2633, 6353, 15641, 38789, 97416, 246410, 628726, 1614292, 4171955, 10839366, 28308678, 74266477, 195667533, 517504253, 1373640355, 3658205088, 9772510063, 26181295237, 70330621171
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- R. Otter, The number of trees, Ann. of Math. (2) 49 (1948), 583-599 discusses asymptotics.
- E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees)., J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
- Index entries for sequences related to trees
Programs
-
Mathematica
n = 30; (* algorithm from Rains and Sloane *) S4[f_,h_,x_] := f[h,x]^4/24 + f[h,x]^2 f[h,x^2]/4 + f[h,x] f[h,x^3]/3 + f[h,x^2]^2/8 + f[h,x^4]/4; S5[f_,h_,x_] := f[h,x]^5/120 + f[h,x]^3 f[h,x^2]/12 + f[h,x]^2 f[h,x^3]/6 + f[h,x] f[h,x^2]^2/8 + f[h,x] f[h,x^4]/4 + f[h,x^2] f[h,x^3]/6 + f[h,x^5]/5; T[-1,z_] := 1; T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S4[T,h-1,z]z, z], n+1]; Sum[Take[CoefficientList[z^(n+1) + S5[T,h-1,z]z - S5[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{0,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *) b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1, k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]; b[0, i_, t_, k_] = 1; m = 4; (* m = maximum children *) n = 40; gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A036718 *) ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i]; CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x], {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)
Formula
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S5,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^5 + 10*B(x)^3*B(x^2) + 15*B(x)*B(x^2)^2 + 20*B(x)^2*B(x^3) + 20*B(x^2)*B(x^3) + 30*B(x)*B(x^4) + 24*B(x^5)) / 120, where B(x) = 1 + x * cycle_index(S4,B(x)) = 1 + x * (B(x)^4 + 6*B(x)^2*B(x^2) + 8*B(x)*B(x^3) + 3*B(x^2)^2 + 6*B(x^4)) / 24 is the generating function for A036718. - Robert A. Russell, Jan 19 2023
Extensions
a(0) changed to 1 by Andrew Howroyd, Dec 18 2020