cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036653 Number of 6-valent trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 22, 45, 101, 223, 520, 1223, 2954, 7208, 17905, 44863, 113738, 290605, 748711, 1941592, 5067433, 13297590, 35074788, 92939166, 247317085, 660681399, 1771321949, 4764829720, 12857155911, 34793296227, 94410222996, 256826514689, 700311754812, 1913868186951
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=6 of A144528; A036721 (rooted trees).

Programs

  • Mathematica
    n = 20; (* algorithm from Rains and Sloane *)
    S5[f_,h_,x_] := f[h,x]^5/120 + f[h,x]^3 f[h,x^2]/12 + f[h,x]^2 f[h,x^3]/6 + f[h,x] f[h,x^2]^2/8 + f[h,x] f[h,x^4]/4 + f[h,x^2] f[h,x^3]/6 + f[h,x^5]/5;
    S6[f_,h_,x_] := f[h,x]^6/720 + f[h,x]^4 f[h,x^2]/48 + f[h,x]^3 f[h,x^3]/18 + f[h,x]^2 f[h,x^2]^2/16 + f[h,x]^2 f[h,x^4]/8 + f[h,x] f[h,x^2] f[h,x^3]/6 + f[h,x] f[h,x^5]/5 + f[h,x^2]^3/48 + f[h,x^2] f[h,x^4]/8 + f[h,x^3]^2/18 + f[h,x^6]/6;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S5[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S6[T,h-1,z]z - S6[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{0,1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)
    b[n_, i_, t_, k_] := b[n,i,t,k] = If[i<1, 0, Sum[Binomial[b[i-1,i-1,
      k,k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    b[0, i_, t_, k_] = 1; m = 5; (* m = maximum children *) n = 40;
    gf[x_] = 1 + Sum[b[j-1,j-1,m,m]x^j,{j,1,n}]; (* G.f. for A036721 *)
    ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
    CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
    {x, 0, n}]],x] (* Robert A. Russell, Jan 19 2023 *)

Formula

a(n) = A036651(n) + A036652(n) for n > 0.
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S6,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^6 + 15*B(x)^4*B(x^2) + 45*B(x)^2*B(x^2)^2 + 15*B(x^2)^3 + 40*B(x)^3*B(x^3) + 120*B(x)*B(x^2)*B(x^3) + 40*B(x^3)^2 + 90*B(x)^2*B(x^4) + 90*B(x^2)*B(x^4) + 144*B(x)*B(x^5) + 120*B(x^6)) / 720, where B(x) = 1 + x * cycle_index(S5,B(x)) = 1 + x * (B(x)^5 + 10*B(x)^3*B(x^2) + 15*B(x)*B(x^2)^2 + 20*B(x)^2*B(x^3) + 20*B(x^2)*B(x^3) + 30*B(x)*B(x^4) + 24*B(x^5)) / 120 is the generating function for A036721. - Robert A. Russell, Jan 19 2023

Extensions

a(0) changed to 1 and terms a(32) and beyond from Andrew Howroyd, Dec 18 2020