cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036659 Product of n with sum of next n consecutive integers.

Original entry on oeis.org

2, 14, 45, 104, 200, 342, 539, 800, 1134, 1550, 2057, 2664, 3380, 4214, 5175, 6272, 7514, 8910, 10469, 12200, 14112, 16214, 18515, 21024, 23750, 26702, 29889, 33320, 37004, 40950, 45167, 49664, 54450, 59534, 64925, 70632, 76664, 83030, 89739, 96800, 104222, 112014
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 15 1998

Keywords

Examples

			n=3 -> 3*(4+5+6)=45
		

Crossrefs

Cf. A036660.

Programs

  • Magma
    I:=[2, 14, 45, 104]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 25 2012
  • Mathematica
    CoefficientList[Series[(2+6*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Apr 25 2012 *)
    Table[(n^2*(1+3n))/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{2,14,45,104},40] (* Harvey P. Dale, Jan 04 2015 *)
  • PARI
    a(n)=n^2*(3*n+1)/2 \\ Charles R Greathouse IV, Dec 08 2011
    

Formula

a(n) = 2 + (3*n*n + 10*n + 11)*n/2. - Frank Ellermann, Mar 16 2002
a(n) = n^2(3n + 1)/2. - Ronnie B Kon (ronniekon(AT)yahoo.com), Jun 09 2006
G.f.: x*(2 + 6*x + x^2)/(1 - x)^4. - Colin Barker, Mar 27 2012
From Amiram Eldar, Jan 10 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/3 + sqrt(3)*Pi + 9*log(3) - 18.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/6 - 2*sqrt(3)*Pi - 12*log(2) + 18. (End)