A036659 Product of n with sum of next n consecutive integers.
2, 14, 45, 104, 200, 342, 539, 800, 1134, 1550, 2057, 2664, 3380, 4214, 5175, 6272, 7514, 8910, 10469, 12200, 14112, 16214, 18515, 21024, 23750, 26702, 29889, 33320, 37004, 40950, 45167, 49664, 54450, 59534, 64925, 70632, 76664, 83030, 89739, 96800, 104222, 112014
Offset: 1
Examples
n=3 -> 3*(4+5+6)=45
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A036660.
Programs
-
Magma
I:=[2, 14, 45, 104]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 25 2012
-
Mathematica
CoefficientList[Series[(2+6*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Apr 25 2012 *) Table[(n^2*(1+3n))/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{2,14,45,104},40] (* Harvey P. Dale, Jan 04 2015 *)
-
PARI
a(n)=n^2*(3*n+1)/2 \\ Charles R Greathouse IV, Dec 08 2011
Formula
a(n) = 2 + (3*n*n + 10*n + 11)*n/2. - Frank Ellermann, Mar 16 2002
a(n) = n^2(3n + 1)/2. - Ronnie B Kon (ronniekon(AT)yahoo.com), Jun 09 2006
G.f.: x*(2 + 6*x + x^2)/(1 - x)^4. - Colin Barker, Mar 27 2012
From Amiram Eldar, Jan 10 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/3 + sqrt(3)*Pi + 9*log(3) - 18.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/6 - 2*sqrt(3)*Pi - 12*log(2) + 18. (End)