cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036675 G.f. satisfies A(x) = 1 + x*A(x)^2*A(x^2).

Original entry on oeis.org

1, 1, 2, 6, 18, 59, 198, 690, 2450, 8878, 32632, 121518, 457262, 1736526, 6646340, 25613086, 99298674, 387021728, 1515594560, 5960406102, 23530528512, 93216984177, 370450977206, 1476458287082, 5900150928510, 23635544130948
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A := 1; f := proc(n) global A; coeff(series( 1+x*(A*subs(x=x^2,A)), x, n+1), x,n); end; for n from 1 to 50 do A := series(A+f(n)*x^n,x,n +1); od: A;
  • Mathematica
    terms = 26; A[] = 0; Do[A[x] = 1 + x*A[x]^2*A[x^2] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
  • Maxima
    T(n,m):=if m=n then 1 else sum((m*binomial(m+2*i-1,i))/(m+i)*((1+(-1)^(n-m))/2)*T((n-m)/2,i),i,1,n-m);
    makelist(T(2*n+1,1),n,0,30); /* Vladimir Kruchinin, Mar 18 2015 */
  • PARI
    a(n)=local(A,m); if(n<0,0,m=2; A=1+O(x); while(m<=n+1,m*=2; A=2/(1+sqrt(1-4*x*subst(A,x,x^2)))); polcoeff(A,n))
    

Formula

G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-x^2/(1-x^2)) (continued fraction); more generally g.f. C(x/(1-x^2/(1-x^2))) where C(x) is the g.f. for the Catalan numbers (A000108). [Joerg Arndt, Mar 18 2011]
a(n) ~ c * d^n / n^(3/2), where d = 4.250770453055989899189676464071962617426..., c = 0.600960911911396921862654605015399962... . - Vaclav Kotesovec, Aug 10 2014
a(n) = T(2*n+1,1), where T(n,m) = sum(i=1..n-m, (m*binomial(m+2*i-1,i))/(m+i)*((1+(-1)^(n-m))/2)*T((n-m)/2,i)), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 18 2015