cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036693 Number of Gaussian integers z = a + bi satisfying n-1 < |z| <= n.

Original entry on oeis.org

1, 4, 8, 16, 20, 32, 32, 36, 48, 56, 64, 60, 64, 88, 84, 96, 88, 104, 108, 120, 128, 116, 144, 136, 140, 168, 160, 168, 164, 176, 192, 180, 208, 200, 216, 228, 200, 240, 220, 264, 248, 236, 264, 264, 288, 284, 264, 296, 292, 312
Offset: 0

Views

Author

Keywords

Examples

			a(10^2) = 660, a(10^3) = 6392, a(10^4) = 62952, a(10^5) = 628520, a(10^6) = 6281404. - _Reinhard Zumkeller_, Jan 13 2002
		

Crossrefs

Cf. A000328.

Programs

  • Magma
    [#[: x in [-n..n], y in [-n..n]| n-1 lt r and r  le n where r is Sqrt(x^2+ y^2)]: n in [0..50]]; // Marius A. Burtea, Feb 18 2020
    
  • Sage
    def A036693(n):
        if n == 0: return 1
        Range = lambda n: ((i, j) for i in (-n..n) for j in (-n..n))
        return sum(1 for (j, k) in Range(n) if (n-1)^2 < j^2 + k^2 <= n^2)
    print([A036693(n) for n in range(20)]) # Peter Luschny, Mar 27 2020

Formula

From Reinhard Zumkeller, Jan 13 2002: (Start)
a(n)/n ~ 2*Pi.
a(n) = A000328(n)-A000328(n-1). (End)