cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A036718 Number of rooted trees where each node has at most 4 children.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 19, 45, 106, 260, 643, 1624, 4138, 10683, 27790, 72917, 192548, 511624, 1366424, 3666930, 9881527, 26730495, 72556208, 197562840, 539479354, 1477016717, 4053631757, 11149957667, 30732671572, 84871652538, 234802661446, 650684226827
Offset: 0

Views

Author

Keywords

Examples

			From _Joerg Arndt_, Feb 25 2017: (Start)
The a(5) = 9 rooted trees with 5 nodes and out-degrees <= 4 are:
:         level sequence    out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 4 ]    [ 1 1 1 1 . ]
:  O--o--o--o--o
:
:     2:  [ 0 1 2 3 3 ]    [ 1 1 2 . . ]
:  O--o--o--o
:        .--o
:
:     3:  [ 0 1 2 3 2 ]    [ 1 2 1 . . ]
:  O--o--o--o
:     .--o
:
:     4:  [ 0 1 2 3 1 ]    [ 2 1 1 . . ]
:  O--o--o--o
:  .--o
:
:     5:  [ 0 1 2 2 2 ]    [ 1 3 . . . ]
:  O--o--o
:     .--o
:     .--o
:
:     6:  [ 0 1 2 2 1 ]    [ 2 2 . . . ]
:  O--o--o
:     .--o
:  .--o
:
:     7:  [ 0 1 2 1 2 ]    [ 2 1 . 1 . ]
:  O--o--o
:  .--o--o
:
:     8:  [ 0 1 2 1 1 ]    [ 3 1 . . . ]
:  O--o--o
:  .--o
:  .--o
:
:     9:  [ 0 1 1 1 1 ]    [ 4 . . . . ]
:  O--o
:  .--o
:  .--o
:  .--o
(End)
		

Crossrefs

Programs

  • Maple
    A := 1; f := proc(n) global A; local A2,A3,A4; A2 := subs(x=x^2,A); A3 := subs(x=x^3,A); A4 := subs(x=x^4,A);
    coeff(series( 1+x*( (A^4+3*A2^2+8*A*A3+6*A^2*A2+6*A4)/2 ), x, n+1), x,n); end;
    for n from 1 to 50 do A := series(A+f(n)*x^n,x,n +1); od: A;
  • Mathematica
    a = 1; f[n_] := Module[{a2, a3, a4}, a2 = a /. x -> x^2; a3 = a /. x -> x^3; a4 = a /. x -> x^4; Coefficient[ Series[ 1 + x*(a^4 + 3*a2^2 + 8*a*a3 + 6*a^2*a2 + 6*a4)/24, {x, 0, n + 1}] // Normal, x, n]]; For[n = 1, n <= 30, n++, a = Series[a + f[n]*x^n, {x, 0, n + 1}] // Normal]; CoefficientList[a, x] (* Jean-François Alcover, Jan 16 2013, after Maple *)
    b[0, i_, t_, k_] = 1; m = 4; (* m = maximum children *)
    b[n_,i_,t_,k_]:= b[n,i,t,k]= If[i<1,0,
       Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]*
       b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    PrependTo[Table[b[n-1, n-1, m, m], {n, 1, 30}], 1] (* Robert A. Russell, Dec 27 2022 *)

Formula

G.f. satisfies A(x) = 1 + x*cycle_index(Sym(4), A(x)).
a(n) = Sum_{j=1..4} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 19 2017
a(n) / a(n+1) ~ 0.343520104570489046632074698738792654644751898257681287407149... - Robert A. Russell, Feb 11 2023

Extensions

Better description from Frank Ruskey, Sep 23 2000

A036722 G.f. satisfies A(x) = 1 + x*cycle_index(Sym(6), A(x)).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 114, 283, 710, 1816, 4690, 12267, 32338, 85978, 230080, 619521, 1676808, 4560286, 12454272, 34143682, 93928091, 259208006, 717375068, 1990625390, 5537142610, 15436744525, 43124847431, 120708508008, 338477040445, 950714584576
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of rooted trees where each node has at most 6 children. [Patrick Devlin, Apr 29 2012]

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 6$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n - 1, n - 1, 6, 6]];
    Table[a[n] , {n, 0, 35}] // Flatten (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)

Formula

a(n) = Sum_{j=1..6} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 19 2017
a(n) / a(n+1) ~ 0.338887196052856714304749078960983936661485522864792573284374... - Robert A. Russell, Feb 11 2023

A036721 G.f. satisfies A(x) = 1 + x*cycle_index(Sym(5), A(x)).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 47, 112, 277, 693, 1766, 4547, 11852, 31146, 82534, 220149, 590834, 1593951, 4320723, 11761394, 32138301, 88121176, 242383729, 668607115, 1849194691, 5126800907, 14245679652, 39666239726, 110661514973, 309280533011, 865839831118
Offset: 0

Views

Author

Keywords

Comments

Also the number of rooted trees where each node has at most 5 children. [Patrick Devlin, Apr 30 2012]

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 5$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n - 1, n - 1, 5, 5]];
    Table[a[n], {n, 0, 35}] // Flatten (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)

Formula

a(n) = Sum_{j=1..5} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 19 2017
a(n) / a(n+1) ~ 0.340017469151060086823930137816585262710976835711484267209811... - Robert A. Russell, Feb 11 2023

A036726 G.f. satisfies A(x) = 1 + x*cycle_index(G,A(x)) where G = cyclic group of order 3 generated by (1,2,3)(4,5,6).

Original entry on oeis.org

1, 1, 2, 9, 46, 247, 1436, 8684, 54102, 345042, 2241014, 14771896, 98568908, 664518873, 4519394316, 30969650840, 213625862342, 1482134240438, 10335968352644, 72411026552273, 509383556655134, 3596650497366507, 25480925906761956
Offset: 0

Views

Author

Keywords

Crossrefs

A182378 G.f. satisfies A(x) = 1 + x*cycle_index(Sym(7), A(x)).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 48, 115, 285, 716, 1833, 4740, 12410, 32754, 87176, 233547, 629540, 1705809, 4644231, 12697500, 34848694, 95973026, 265142431, 734606478, 2040683413, 5682634446, 15859800889, 44355531103, 124290064228, 348904212741, 981082979409
Offset: 0

Views

Author

Michael Burkhart, Apr 26 2012

Keywords

Comments

Number of rooted trees where each node has at most 7 children.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 7$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[ b[i-1, i-1, k, k] + j - 1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n-1, n-1, 7, 7]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jan 15 2018, after Alois P. Heinz *)

Formula

a(n) = Sum_{j=1..7} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 19 2017
a(n) / a(n+1) ~ 0.338512011286603947719604869750539045616436718225097926729820... - Robert A. Russell, Feb 11 2023

Extensions

More terms from Patrick Devlin, Apr 29 2012

A036719 G.f. satisfies A(x) = 1 + x*cycle_index(Cyclic(4), A(x)).

Original entry on oeis.org

1, 1, 1, 3, 7, 22, 65, 212, 697, 2372, 8179, 28703, 101851, 365393, 1322034, 4820378, 17691018, 65306700, 242317423, 903242615, 3380707920, 12700575742, 47874113728, 181013422393, 686341240781, 2609093456212, 9941953711409
Offset: 0

Views

Author

Keywords

Crossrefs

A036720 G.f. satisfies A(x) = 1 + x*cycle_index(Klein_4_group, A(x)).

Original entry on oeis.org

1, 1, 1, 4, 8, 27, 79, 270, 894, 3130, 11011, 39622, 143879, 528919, 1960248, 7323999, 27542451, 104194485, 396204388, 1513599583, 5806283770, 22356914550, 86376741339, 334752355281, 1300999638753, 5069411676111, 19800500391264
Offset: 0

Views

Author

Keywords

Crossrefs

A036723 G.f. satisfies A(x) = 1 + x*cycle_index(G,A(x)) where G = cyclic group of order 2 generated by (1,2)(3,4).

Original entry on oeis.org

1, 1, 2, 8, 30, 135, 622, 3032, 15134, 77506, 403780, 2135588, 11430910, 61815916, 337193808, 1853183376, 10251612034, 57037706410, 318965425380, 1791842232154, 10107161112356, 57221612791015, 325045726349906, 1852055247196164
Offset: 0

Views

Author

Keywords

Crossrefs

A036724 G.f. satisfies A(x) = 1 + x*cycle_index(G,A(x)) where G = cyclic group of order 2 generated by (1,2)(3,4)(5,6).

Original entry on oeis.org

1, 1, 3, 18, 109, 768, 5652, 43618, 346353, 2816526, 23321925, 196005552, 1667527836, 14333190427, 124283998707, 1085847441828, 9549523972105, 84471264138366, 751042470499425, 6708237169875867, 60164133936171522
Offset: 0

Views

Author

Keywords

Crossrefs

A036725 G.f. satisfies A(x) = 1 + x*cycle_index(G,A(x)) where G = cyclic group of order 2 generated by (1,2)(3,4)(5,6)(7,8).

Original entry on oeis.org

1, 1, 4, 32, 268, 2574, 26004, 274752, 2990412, 33321801, 378155340, 4355839608, 50792907100, 598432565856, 7112882558060, 85186232560504, 1026982086302284, 12453151958594288, 151785836438975264, 1858565360218893144, 22851521570687098564
Offset: 0

Views

Author

Keywords

Crossrefs

Showing 1-10 of 22 results. Next