cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036718 Number of rooted trees where each node has at most 4 children.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 19, 45, 106, 260, 643, 1624, 4138, 10683, 27790, 72917, 192548, 511624, 1366424, 3666930, 9881527, 26730495, 72556208, 197562840, 539479354, 1477016717, 4053631757, 11149957667, 30732671572, 84871652538, 234802661446, 650684226827
Offset: 0

Views

Author

Keywords

Examples

			From _Joerg Arndt_, Feb 25 2017: (Start)
The a(5) = 9 rooted trees with 5 nodes and out-degrees <= 4 are:
:         level sequence    out-degrees (dots for zeros)
:     1:  [ 0 1 2 3 4 ]    [ 1 1 1 1 . ]
:  O--o--o--o--o
:
:     2:  [ 0 1 2 3 3 ]    [ 1 1 2 . . ]
:  O--o--o--o
:        .--o
:
:     3:  [ 0 1 2 3 2 ]    [ 1 2 1 . . ]
:  O--o--o--o
:     .--o
:
:     4:  [ 0 1 2 3 1 ]    [ 2 1 1 . . ]
:  O--o--o--o
:  .--o
:
:     5:  [ 0 1 2 2 2 ]    [ 1 3 . . . ]
:  O--o--o
:     .--o
:     .--o
:
:     6:  [ 0 1 2 2 1 ]    [ 2 2 . . . ]
:  O--o--o
:     .--o
:  .--o
:
:     7:  [ 0 1 2 1 2 ]    [ 2 1 . 1 . ]
:  O--o--o
:  .--o--o
:
:     8:  [ 0 1 2 1 1 ]    [ 3 1 . . . ]
:  O--o--o
:  .--o
:  .--o
:
:     9:  [ 0 1 1 1 1 ]    [ 4 . . . . ]
:  O--o
:  .--o
:  .--o
:  .--o
(End)
		

Crossrefs

Programs

  • Maple
    A := 1; f := proc(n) global A; local A2,A3,A4; A2 := subs(x=x^2,A); A3 := subs(x=x^3,A); A4 := subs(x=x^4,A);
    coeff(series( 1+x*( (A^4+3*A2^2+8*A*A3+6*A^2*A2+6*A4)/2 ), x, n+1), x,n); end;
    for n from 1 to 50 do A := series(A+f(n)*x^n,x,n +1); od: A;
  • Mathematica
    a = 1; f[n_] := Module[{a2, a3, a4}, a2 = a /. x -> x^2; a3 = a /. x -> x^3; a4 = a /. x -> x^4; Coefficient[ Series[ 1 + x*(a^4 + 3*a2^2 + 8*a*a3 + 6*a^2*a2 + 6*a4)/24, {x, 0, n + 1}] // Normal, x, n]]; For[n = 1, n <= 30, n++, a = Series[a + f[n]*x^n, {x, 0, n + 1}] // Normal]; CoefficientList[a, x] (* Jean-François Alcover, Jan 16 2013, after Maple *)
    b[0, i_, t_, k_] = 1; m = 4; (* m = maximum children *)
    b[n_,i_,t_,k_]:= b[n,i,t,k]= If[i<1,0,
       Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]*
       b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
    PrependTo[Table[b[n-1, n-1, m, m], {n, 1, 30}], 1] (* Robert A. Russell, Dec 27 2022 *)

Formula

G.f. satisfies A(x) = 1 + x*cycle_index(Sym(4), A(x)).
a(n) = Sum_{j=1..4} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 19 2017
a(n) / a(n+1) ~ 0.343520104570489046632074698738792654644751898257681287407149... - Robert A. Russell, Feb 11 2023

Extensions

Better description from Frank Ruskey, Sep 23 2000