cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036721 G.f. satisfies A(x) = 1 + x*cycle_index(Sym(5), A(x)).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 47, 112, 277, 693, 1766, 4547, 11852, 31146, 82534, 220149, 590834, 1593951, 4320723, 11761394, 32138301, 88121176, 242383729, 668607115, 1849194691, 5126800907, 14245679652, 39666239726, 110661514973, 309280533011, 865839831118
Offset: 0

Views

Author

Keywords

Comments

Also the number of rooted trees where each node has at most 5 children. [Patrick Devlin, Apr 30 2012]

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
           b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(n-1$2, 5$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 20 2017
  • Mathematica
    b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
    a[n_] := If[n == 0, 1, b[n - 1, n - 1, 5, 5]];
    Table[a[n], {n, 0, 35}] // Flatten (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)

Formula

a(n) = Sum_{j=1..5} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 19 2017
a(n) / a(n+1) ~ 0.340017469151060086823930137816585262710976835711484267209811... - Robert A. Russell, Feb 11 2023