A036745 Squares including each digit exactly once.
1026753849, 1042385796, 1098524736, 1237069584, 1248703569, 1278563049, 1285437609, 1382054976, 1436789025, 1503267984, 1532487609, 1547320896, 1643897025, 1827049536, 1927385604, 1937408256, 2076351489, 2081549376, 2170348569, 2386517904, 2431870596
Offset: 1
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..87 (full sequence)
Crossrefs
Cf. A156977 (square roots).
Programs
-
Maple
lim:=floor(sqrt(9876543210)): for n from floor(sqrt(1023456789)) to lim do d:=[op(convert(n^2, base, 10))]: pandig:=true: for k from 0 to 9 do if(numboccur(k, d)<>1)then pandig:=false: break: fi: od: if(pandig)then printf("%d, ",n^2): fi: od: # Nathaniel Johnston, Jun 22 2011
-
Mathematica
Select[ Range[ Floor[ Sqrt[ 1023456789 ] ], Floor[ Sqrt[ 9876543210 ] ] ]^2, Union[ DigitCount[ # ] ]== {1} & ] Select[FromDigits/@Permutations[Range[0,9]],IntegerLength[#]==10&&IntegerQ[ Sqrt[#]]&] (* Harvey P. Dale, Apr 09 2012 *)
-
Python
def c(n): return len(set(str(n))) == 10 def afull(): return [k*k for k in range(31622, 10**5) if c(k*k)] print(afull()) # Michael S. Branicky, Dec 27 2022
Comments