cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036778 Number of labeled rooted trees on 2n+1 nodes each node having an even number of children.

Original entry on oeis.org

1, 3, 65, 3787, 427905, 79549811, 22036379521, 8513206310715, 4374455745966593, 2885264091484122979, 2376040584184726335681, 2389484304129542889498923, 2881763610489447544905661825, 4105338427962827177938910410707, 6820519958449287654130653696838145
Offset: 0

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 185 (3.1.82).

Programs

  • Maple
    [ seq((1/2^(2*n+1))*add( binomial(2*n+1,j)*(2*j-(2*n+1))^(2*n),j=0..(2*n+1)), n=1..30) ];
  • Mathematica
    Table[1/2^(2n+1) Sum[Binomial[2n+1,k](2k-2n-1)^(2n),{k,0,2n+1}],{n,0,20}] (* Harvey P. Dale, Mar 06 2012 *)
  • PARI
    a(n)=local(X); if(n<0,0,X=x+O(x^(2*n+1));(2*n+1)!*polcoeff(serreverse(x/cosh(x)),2*n+1)) \\ Paul D. Hanna, Oct 15 2003

Formula

G.f.: REVERT(x/cosh(x)) = Sum_{n>=0} a(n)*x^(2n+1)/(2n+1)!. - Paul D. Hanna, Oct 15 2003
a(n) = (1/2^(2*n+1)) * Sum_{k=0..2*n+1} binomial(2*n+1, k)*(2*k-2*n-1)^(2*n).

Extensions

Edited by Christian G. Bower, Jan 13 2004