cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036838 Triangle read by rows: T(n,k) = value of Schoenheim bound L_1(n+2,k+2,k+1) on covering numbers (0 <= k <= n).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 4, 1, 3, 6, 6, 5, 1, 4, 7, 11, 9, 6, 1, 4, 11, 14, 18, 12, 7, 1, 5, 12, 25, 26, 27, 16, 8, 1, 5, 17, 30, 50, 44, 39, 20, 9, 1, 6, 19, 47, 66, 92, 70, 54, 25, 10, 1, 6, 24, 57, 113, 132, 158, 105, 72, 30, 11, 1, 7, 26, 78, 149, 245, 246
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2002

Keywords

Comments

The relation with Schoenheim's notation is L(v,k,t,l) = psi(k,t,l,v). - R. J. Mathar, Aug 12 2012

Examples

			Triangle begins
  1;
  2,  1;
  2,  3,  1;
  3,  4,  4,  1;
  3,  6,  6,  5,  1;
  4,  7, 11,  9,  6,  1;
  4, 11, 14, 18, 12,  7,  1;
  5, 12, 25, 26, 27, 16,  8,  1;
  ...
		

References

  • W. H. Mills and R. C. Mullin, Coverings and packings, pp. 371-399 of Jeffrey H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory, Wiley, 1992. See Eq. 1.

Crossrefs

Programs

  • Maple
    L := proc(v,k,t,l)
        local i,t1;
        t1 := l;
        for i from v-t+1 to v do
            t1 := ceil(t1*i/(i-(v-k)));
        od:
        t1;
    end;
    A036838 := proc(n,k)
        L(n+2,k+2,k+1,1) ;
    end proc:
  • Mathematica
    L[v_, k_, t_, l_] := Module[{i, t1}, t1 = l; For[i = v-t+1, i <= v, i++, t1 = Ceiling[t1*i/(i-(v-k))]]; t1]; A036838[n_, k_] := L[n+2, k+2, k+1, 1]; Table[A036838[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2013, translated from Maple *)